	day	weekday	time	room	type	topic	notes and details	GL	RN	LP, MDP, AF
2	16/09/2024	mon	08:30-10:30	2.1.1	L	L01 Introduction to the course	Course organization, classes, exams, material, program. Status of the MEMS and CMOS market. Key applications and course overview.	2		
4	18/09/2024	wed	14:30-16:00	7.0.1	L	L02 Technologies for MEMS sensors	Overview of a sample MEMS process. Main steps: epitaxial growth, DRIE, bonding, packaging.	2		
6	19/09/2024	thu	14:30-16:00	T02	L	LO3 The spring-mass-damper system	Inertial and non-inertial references. Spring-mass-damper system in the time and frequency domains. Quality factor (underdamped and	2		
8	20/09/2024	fri	08:30-10:30	9.0.3		I04 MEMS accelerometers: part 1	overdamped systems). Role of electrostatic forces in the system. General architecture: capacitance variation vs displacement. Charge amplifier differential readout. Pull-in effects. Electrostatic softening and	2		
10	22/00/2024		08:20 10:20	211		LOG MEMS accelerometers, part 2	overall sensitivity. Linearity of a parallel-plate configuration.	,		
10	25/05/2024	mon	14-20 16-00	7.0.1	L.	LOS MENIS accelerometers: part 2	Accelerometer banawatin and croice or the quarky ractor. The momechanical hole in Mews. Trauerons vs applications, como higer readout. Sample configurations of springs: in-plane translation, out-of-plane translation and rotation. Series and parallel of springs. Sample			
12	25/09/2024	wed	14.50-16.00	7.0.1	L	LUG MEMS accelerometers: part 3	acceleroemters architectures. Effects of process nonuniformities on springs. Folded springs.	2		
14	26/09/2024	thu	14:30-16:00	102	E	E01 MEMS accelerometer design	Design of an in-plane MEMS accelerometer to satisfy a specific application with a specific process.		2	
16	27/09/2024	fri	08:30-10:30	9.0.3	L	L07 MEMS accelerometers: part 4	The problems of scaling and pull-in. Charge control vs voltage control: effects of parasitics. Switched capacitor circuits. Force feedback.	2		
18	30/09/2024	mon	08:30-10:30	2.1.1	L	L28 UN-related goals	Autonomous driving and its impact on the society for cities of the ruture. Associated sensor needs, sensors in biomedical applications, sensors for sustainable infrastructures	2		
20	02/10/2024	wed	14:30-16:00	7.0.1	E	E02 MEMS accelerometers electronic readout	Circuits for MEMS accelerometers: description and exercise, noise limitations (MEMS and electronics), dynamics considerations.		2	
22	03/10/2024	thu	14:30-16:00	T02	E	E03 Torsional MEMS accelerometer design	Torionsal springs. Calculation of the sriffness and of the moment of inertia for simple configurations. Numerical exercise.		2	
24	04/10/2024	fri	08:30-10:30	9.0.3	L	L08 MEMS resonators: part 1	Comb-finger actuation and sensing. Transduction coefficient and calculation of the admittance. Equivalent electrical model in the frequency domain.	2		
26	07/10/2024	mon	08:30-10:30	2.1.1	С	E04 CAD simulation of MEMS capacitances	Review of capacitive sensing configurations in MEMS. Ideal laws and deviations due to fringe effects. Case study for vertical parallel plates.			2
28	09/10/2024	wed	14:30-16:00	7.0.1	L	L09 MEMS resonators: part 2	Oscillator circuits: Barkhausen criteria. Sample TIA plus nonlinearity example. Issues of linearity. Example of resonant accelerometer.	2		
	10/10/2024	thu				M.S. Graduation day	No classes			
30	11/10/2024	fri	08:30-10:30	9.0.3	L	E05 Resonator design	Dimensioning of a Tang resonator to be used in a 32 kHz clock, with process spread and tunability.		2	
32	14/10/2024	mon	08:30-10:30	2.1.1	L	L11 MEMS gyroscopes: part 1	Generalities and the Coriolis force. Sample architecture. Resonant operation. Drive displacement. Sensitivity.	2		
34	16/10/2024	wed	14:30-16:00	7.0.1	Е	E06 Oscillator circuit	Dimensioning of an oscillator based on a CA configuration. Comparative discussion with respect to the TIA case.		2	
36	17/10/2024	thu	14:30-16:00	T02	L	L12 MEMS gyroscopes: part 2	Issues from accelerations and advanced architectures. Single and double decoupling. In-plane and out-of-plane architectures. Tuning fork.	2		
38	18/10/2024	fri	08:30-10-30	9.0.3	v	L10 MEMS resonators: part 3	Capacitive PP sense detection. Overall sensitivity. Effects of the feedthrough capacitance on the electrical model of the resonator, and on the Gloop of the oscillator. Common resonator	2		
40	21/10/2024		08-20 10-20	2.1.1	v	Lio MEMS resonators. part 3	configurations.	-		
40	21/10/2024	mon	08.30-10.30	2.1.1	v	L13 MEMS gyroscopes: part 3	Gyroscope bandwidth. Sensitivity and gain-bandwidth trade-off. Electronics and thermomechanical noise.	2		
42	23/10/2024	wed	14:30-16:00	7.0.1	С	E07 CAD simulation of MEMS accelerometers	Introduction to CAD FEM simulations for MEMS. Examples on an accelerometer.			2
44	24/10/2024	thu	14:30-16:00	T02	С	E08 CAD simulation of torsional accelerometers	Autonomous design of an out-of-plane MEMS accelerometer with capacitive readout for consumer applications.			2
	25/10/2024	fri				Backup slot	No classes			
46	28/10/2024	mon	08:30-10:30	2.1.1	L	L14 MEMS gyroscopes: part 4	Issues in resonance operation (temperature dependence). Utt-resonance operation. Gyroscope bandwidth. Sensitivity and gan-bandwidth trade- off.	2		
48	30/10/2024	wed	14:30-16:00	7.0.1	Е	E09 Gyroscopes electromechanical design	Push pull actuation and sizing of relevant electromechanical parameters.		2	
50	31/10/2024	thu	14:30-16:00	T02	Е	E10 Drive circuits for gyroscopes	Oscillators for gyroscopes. Relevance of AGC circuits and solutions. AGC stability.		2	
	01/11/2024	fri				All saints holiday	No classes			
52	04/11/2024	mon	08:30-10:30	2.1.1	L	L15 MEMS gyroscopes: part 5	Themormechanical noise in mode-split operation. Electronic noise in mode-split operation. Examples of real measurements.	2		
54	06/11/2024	wed	14:30-16:00	7.0.1	С	E11 CAD simulation of MEMS yaw gyroscopes	Design of a MEMS gyroscope. Parametric approach and finalisation of the geometry.			2
56	07/11/2024	thu	14:30-16:00	T02	С	E12 CAD simulation of pitch MEMS gyroscopes	Autonomous design of a MEMS gyroscope.			2
58	08/11/2024	fri	08:30-10:30	9.0.3	L	L16 MEMS gyroscopes: part 6	Quadrature error. Origin. Modelling. Coupling with phase noise. Quadrature error compensation. Tatar scheme.	2		
	11/11/2024	mon			F	L17 MEMS magnetometers: part 1	Lorentz force and resonant working principle. Simplified architecture. Sensitivity. Comparison with Coriolis and inertial forces. Noise, offset.	2		
	13/11/2024	wed			F	L18 MEMS magnetometers: part 2	Off-resonance operation and solutions of the trade offs. Design criteria. Integrated electronics. Comparison with other technologies (AMR, Hall).	2		
60	14/11/2024	thu	14:30-16:00	T02	Е	E13 Sense circuits for gyroscopes	Sensing and demodulation electronics for capacitive gyroscopes. Noise considerations.		2	
	15/11/2024	fri			F	L19 MEMS magnetometers: part 3	Monolithic 3-axis architectures and basic knoledewe of Q factor prediction	2		
62	18/11/2024	mon	08:30-10:30	211		120 MEMS characterization and the Allan Variance	The next killer and ration: the IMTR: Stability insuer Offset drift and the Allan variance. Definition, relation with white noise, and use	,		
64	20/11/2024		14-20 16-00	7.0.1			The next miler approximations are innove paperly states, on second and one main remain excitations, remain main many mark miler move, and use			
64	20/11/2024	weu	14:30-10:00	7.0.1	E	Carriero francisco de la componente	control on a sensor not reactor in the course, to summare the sourcets approach towards other sensors developed in the same technology.		2	
66	21/11/2024	thu	14:30-16:00	102	S	Seminar from industry n. 1	Job profiles in the MEMS industry: the system architect and case studies on digital processing for MEMS			
68	22/11/2024	fri	08:30-10:30	9.0.3	L	L21 Light sensors basics: part 1	Human vision. Description of the eye, photoreceptors, concept of a color space, stimuli to the brain. Basics of light sources.	2		
70	25/11/2024	mon	08:30-10:30	2.1.1	L	L22 Light sensors basics: part 2	CMOS image sensors. System architecture. Basics of optics and diffraction. Number of photons on a pixel.	2		
72	27/11/2024	wed	14:30-16:00	7.0.1	S	Seminar from industry n. 2	Job profiles in the MEMS industry: the MEMS designer and case studies on gyroscope and process design			
74	28/11/2024	thu	14:30-16:00	T02	L	L23 CMOS 3T APS: part 1	Interaction of light in semiconductors. Absorption law. Simple photodiode and typical dimensions. Signal generation and noise overview.	2		
76	29/11/2024	fri	08:30-10:30	9.0.3	С	E15 CAD light absorption in Silicon	Preliminaty CAD to imaging sensors			2
78	02/12/2024	mon	08:30-10:30	2.1.1	L	L24 CMOS APS: part 2	3-transistor APS topology. Transistor-level architecture. Operation. Phases. Linearity. Signal to Noise ratio.	2		
80	04/12/2024	wed	14:30-16:00	7.0.1	Е	E16 photons on a pixel	Calculation of the number of photons generated per second on a pixel of a mobile phone camera from a generic scene.		2	
82	05/12/2024	thu	14:30-16:00	T02	s	Seminar from industry n. 3	Job profiles in the MEMS industry: the test and qualification engineer and case studies on MEMS testing			
84	06/12/2024	fri	08:30-10:30	9.0.3	L	L25 CMOS APS: part 3	Dynamic range of a 3T image sensor. Other limitations: fixed pattern noise. Photon transfer curve.	2		
86	09/12/2024	mon	08:30-10:30	2.1.1	L	L26 CMOS APS: part 4	Limits of a 3T topology and introduction of 4T topologies. Correlated Double Sampling. Backside illumination and advantages.	2		
88	12/12/2024	thu	14:30-16:00	T02	Е	E17 SNR in a 3T topology	Calculating the Signal to Noise Ratio for a 3T CMOS pixel topology. Numerical examples.		2	
90	13/12/2024	fri	08:30-10:30	9.0.3	Е	E18 DR and maximum SNR in 3T APS	Maximum SNR and dynamic range of a 3T CMOS pixel. Choice of the ADC number of bit.		2	
92	16/12/2024	mon	08:30-10-30	2.1.1	F	E19 photon transfer curve	Example of a circuit for correlated double samoling in CMOS APS 4T topologies with extentation of DR. PTC and its and via		2	
0.4	18/12/2024	wod	14:30 16:00	7.0.1			CFA for CMOS image sensors. Demosaicking, Layered junction sensors (working principle). General pros and cons of the two approaches. Color	,	-	
34	10/12/2024	weu	14.30-10.00	7.0.1	L.	L27 CIVIOS APS: part 5 + Q&A n. 4	conversion and color spaces. White balance.	-		
96	19/12/2024	thu	14:30-16:00	102 Alpha. Beta	C	E20 CAD simulations of advanced imaging pixels	Autonomous design of a Prinned photodiode	_		2
99	20/12/2024	fri	8.30-11.30	9.0.3	EXM	Anticipated exam session		3		
								59	26	14