MEMS AND MICROSENSORS – 2024/2025

COMSOL Multiphysics: simulation of a pinned photodiode

Giacomo Langfelder and Luca Pileri

19/12/2024

The pinned photodiode (not to be confused with the P-I-N photodiode) is the mostly adopted photodetector within modern digital cameras. We can estimate approximately at least 10¹⁴ of such photodetectors are operating every day in the world on mobile phones, digital still cameras, video cameras.

The core concept of this device is to decouple the functions of (i) photons collection and (ii) electrons integration, which in a conventional PN photodiode are performed by the same structure, the junction itself. On the contrary, in a pinned photodiode the region where charge is gathered during exposure to photons (indicated as N-type pinned region below) does not correspond to the capacitance on which direct integration is performed (indicated as floating diffusion below).

The correct operation of such a structure is critically dependent on the right doping choices, which makes the design (and the simulation convergence) quite challenging.

Try designing the structure yourself and simulate it with the given voltages. Below, few hints on how to proceed.

	t	ransfer gate	N+ type
	P++ type pinned implant	flo	ating diffusion
P+ type well	N type pinned photodiode		P+ type well
	Description of the set of the		
	P- type epitaxial layer		
	P++ type substrate		

Introduction

Begin by opening Comsol multiphysics. Choose a 2D model, then choose *Semiconductor* as the *Physics* to solve. Once this physics is added, choose the simulation study: select *Stationary*. Click on *Done*, and the main Comsol interface will open.

Like in the former CAD class, in order to simulate this structure, we rely on a symmetric 2D simulation in such a way that the left and right boundary conditions can be conditions of continuity (i.e. Neumann conditions, where we set that the derivative of our variables has a fixed value, in this case null. Indeed, a null derivative means a continuity of the solution at the boundaries).

Name	Value	Description
Wp	500 [nm]	Width of the deep P well
Wppd	5 [um]	Width of the pinned photodiode
Wtg	1 [um]	Width of the transfer gate
tepi	12 [um]	Thickness of the epitaxy
tsub	3 [um]	Thickness of the substrate
timp 200 [nm] Thickness of the thin implant		Thickness of the thin implants
tppd	1.5 [um]	Thickness of the pinned photodiode
tp	2 [um]	Thickness of the p-type region under the gate
Wcont	250 [nm]	Width of the contacts
tox	10 [nm]	Oxide thickness
e_ox	4	Oxide relative permittivity
V_fd	3	Voltage at the floating diffusion

The set of parameters that we define to assist our design is also shown in the Table above, with an obvious meaning for almost all of them when compared to the structure design. The manufacturer gives you the following parameters regarding the dopant profile:

Dopant layer	Туре	Concentration	Junction depth
Epitaxial	р	$10^{15} cm^{-3}$	-
Substrate	p++	$10^{18} cm^{-3}$	$1 \mu m$
Well	p+	$10^{17} cm^{-3}$	$0.5~\mu m$
Pinned photodiode	n	$3 \cdot 10^{16} \ cm^{-3}$	$0.2 \ \mu m$
Pinned implant	p++	$10^{18} cm^{-3}$	$0.1 \ \mu m$
Transfer gate	p+	$10^{17} cm^{-3}$	0.3 μm
Floating diffusion	n+	$10^{18} cm^{-3}$	$0.1 \ \mu m$

In the following pages, you will find the solutions. I suggest using it only as reference. Try to do better than me: parametrize the system dimension, verify the depletion region depth (also for different dopant density and junction depth) or the transfer gate operation.

1. Structure design

y: tepi+tsub

tepi+tsub

1.	Struc	tur	e design		Rectangle Build Selected Build All Objects	
The simulation starts by designing a rectangle corresponding to the structure above. As usual, doping profiles will be added later, so tha we do not have to care about them now.			arts by designing ponding to t As usual, dopi dded later, so th o care about the	g a he ng at em	Label: silicon Volget Type Solid Size and Shape Voldth: 2*Wp+Wppd+Wtg Height: tepi+tsub Voldth: Base: Corner X: 0 Y: 0	• m m m
The	e definitio	on	of the contac	cts	▼ Rotation Angle	
foll	ows the st	eps	below.		Rotation: 0	deg
Label: P	o contact	Label:	N contact (floating diffusion)	Label: E	Bottom contact Label: Transfer gate	
	ng Point	▼ Starti	ng Point	▼ Starti	ng Point	
Specify:	Coordinates	Specify:	Coordinates	Specify:	Coordinates Specify: Coordinates	
x	2*Wp+Wp/2-Wcont/2	х	2*Wp+Wppd+Wtg-(Wp/2-Wcont/2)	X:	2*Wp+Wppd+Wtg-(Wp+Wtg/2-Wcont/2) x: 2*Wp+Wppd+Wtg-(Wp+Wtg/2-Wco	nt/2)
y:	tepi+tsub	y:	tepi+tsub	y:	y: tepi+tsub	
▼ Endpo	oint	▼ Endp	oint	▼ Endp	▼ Endpoint	

2*Wp+Wppd+Wtg-(Wp+Wtg/2+Wcont/2)

tepi+tsub

y:

Note that we do not include the gate oxide, as this can be simplified later adding a specific type of boundary conditions for the electrode associated to the gate (see below).

 Specify:
 Coordinates
 Specify:
 Coordinates
 Specify:
 Coordinates
 Specify:
 Coordinates

 x:
 2*Wp+Wp/2+Wcont/2
 x:
 2*Wp+Wpp/2+Wcont/2
 x:
 2*Wp+Wpp/2+Wcont/2
 x:
 2*Wp+Wpp/2+Wcont/2
 x:
 2*Wp+Wpp/2+Wcont/2

y: 0

Note also that we add a few lines in our geometry, which will help in optimizing the mesh.

Label: d	loping line 1	Label: d	oping line 2	Label: d	oping line 3	Label: d	oping line 4
▼ Startin	ng Point	▼ Startir	ng Point	▼ Startir	ng Point		ng Point
Specify:	Coordinates	Specify:	Coordinates	Specify:	Coordinates	Specify:	Coordinates
X:	0	X:	0	x:	0	x:	0
y:	tepi+tsub-timp	y:	tepi+tsub-2*tp	y:	tsub+timp	y:	tsub-timp
▼ Endpo	pint	▼ Endpo	pint	▼ Endpo	pint	▼ Endpo	pint
Specify:	Coordinates	Specify:	Coordinates	Specify:	Coordinates	Specify:	Coordinates
x:	2*Wp+Wppd+Wtg	x:	2*Wp+Wppd+Wtg	x:	2*Wp+Wppd+Wtg	x:	2*Wp+Wppd+Wtg
y:	tepi+tsub-timp	y:	tepi+tsub-2*tp	y:	tsub+timp	y:	tsub-timp

2. Materials and Boundary Settings

You can set silicon as the material of the entire rectangle.

For what concerns boundary conditions, you have to input:

- all (8!) doping profiles _
- 2 voltages at the metal contacts -
- 1 thin insulator condition at the transfer gate (note: this avoids the need for designing the gate oxide)

Se Ana	ttings alytic Doping Model	•
ν •	Distribution	
В	ox.	•
Ŧ	Impurity	
Imr	urity type:	
A	cceptor doping (p-type)	•
Acc	eptor concentration:	
NA	0 1e15[1/cm^3]	1/m ³
Ŧ	Uniform Region	
Bas	e:	
C	omer	•
Bas	e position:	
r _o	0[um]	X m
Wie	the second	
w	2*Wp+Wppd+Wtg	m
Der	oth:	
D	tepi+tsub	m
•	Profile	
Pro	file away from uniform region:	
G	aussian	•
Spe	cify profile length scale:	
J	unction depth	•
	Specify different length scales for each direction	
Jun	ction depth:	
d_j	1[um]	m
Bac	kground doping concentration:	
N _b	User defined	•
	1e15[1/cm^3]	1/m ³

Se	ttings	
Ana	lytic Doping Model	
+ (Distribution	
Bo	DX	•
T	Impurity	
Imp	urity type:	
A	cceptor doping (p-type)	-
Aco	eptor concentration:	
N _{AC}	1e18[1/cm^3]	1/m ³
+ (Uniform Region	
Base	e:	
C	orner	•
Base	e position:	
r.	0[um]	X
• 0	0[um]	Y
Wid	th:	
W	2*Wp+Wppd+Wtg	m
Dep	oth:	
D	tsub	m
÷ I	Profile	
Prot	file away from uniform region:	
G	aussian	•
Spe	cify profile length scale:	
Ju	unction depth	•
<u> </u>	Specify different length scales for each direction	
June	ction depth:	
d_j	1[um]	m
Back	kground doping concentration:	
N _b	User defined	▼
	1e15[1/cm^3]	1/m ³

Anal	lungs lytic Doping Model	
	ionanaaon seangs	
* L	Jistribution	
Bo	X	
▼ li	mpurity	
Impi	urity type:	
Ac	ceptor doping (p-type)	
Acce	ptor concentration:	
N _{A0}	1e17[1/cm^3]	1
τ L	Jniform Region	
Base	8	
Co	orner	
Base	position:	
<i>r</i>	0[um]	x
,0	tsub+tepi-tp	Y
Widt	th:	
W	Wp	
Dep	th:	
D	tp	
τ P	rofile	
Profi	ile away from uniform region:	
Ga	aussian	
Spec	ify profile length scale:	
Ju	nction depth	
🗆 S	pecify different length scales for each direction	
Junc	tion depth:	
d_j	0.5[um]	
Back	ground doping concentration:	
N_b	User defined	•
	1e15[1/cm^3]	1

Settings	,
Analytic Doping Model	
 Distribution 	
Box	
▼ Impurity	
Impurity type:	
Acceptor doping (p-type)	•
Acceptor concentration:	
N _{A0} 1e17[1/cm^3]	1/m ³
 Uniform Region 	
Base:	
Corner	•
Base position:	
r, Wp+Wppd+Wtg	х
tsub+tepi-tp	Y
Width:	
W Wp	m
Depth:	
D tp	m
▼ Profile	
Profile away from uniform region:	
Gaussian	•
Specify profile length scale:	
Junction depth	•
Specify different length scales for each direction	
Junction depth:	
d _j 0.5[um]	m
Background doping concentration:	
N _b User defined	- 11
1e15[1/cm^3]	1/m ³

Settings		-
Analytic Doping Model		
- Distribution		
Box		•
 Impurity 		
Impurity type:		
Acceptor doping (p-type)		•
Acceptor concentration:		
N _{A0} 1e17[1/cm^3]		1/m³
 Uniform Region 		
Base		
Corner		•
Base position:		
Wp+Wppd	х	
tsub+tepi-timp	Y	m
Width:		
W Wtg		m
Depth:		
D tp		m
 Profile 		
Profile away from uniform region:		
Gaussian		•
Specify profile length scale:		
Junction depth		•
Specify different length scales for each direction		
Junction depth:		
d _j 0.3[um]		m
Background doping concentration:		
N _b User defined	•	
1e15[1/cm^3]		1/m ³
r; υ.sum] ackground doping concentration: V _b User defined [1e15[1/cm^3]	-	1/m

Se	ttings		
Ana	alytic Doping Model		
	Distribution		
P	~~~		
U			
*	Impurity		
Imp	ourity type:		
D	onor doping (n-type)		٠
Dor	nor concentration:		
N _D	3e16[1/cm^3]	1	/m³
Ŧ	Uniform Region		
Bas	e		
C	orner		•
Bas	e position:		
	2*Wp	Х	1
r _o	tsub+tepi-tppd	Y	m
Wic	ith:		
w	Wppd-2*Wp		m
Dep	oth:		
D	tppd		m
*	Profile		
Dre	file august from uniform regions		
FIO	averian		
Sne	cify profile length scale:		
spe	inction dopth		
	Specify different length scales for each direction		
Jun	ction depth:		
d;	0.2[um]		m
Bac	kground doping concentration:		
N _b	User defined	•	
-	1e15[1/cm^3]	1	/m ³
			,

C	Could and			
Settings	Settings			
Analytic Doping Model	Analytic Doping Model			
▼ Distribution	 Distribution 			
Box	Box •			
▼ Impurity	 Impurity 			
Impurity type:	Impurity type:			
Donor doping (n-type) -	Acceptor doping (p-type) -			
Donor concentration:	Acceptor concentration:	Sottings	Settings	Settings
N _{D0} 1e18[1/cm^3] 1/m ³	N _{A0} 1e18[1/cm^3] 1/m ³	Metal Contact	Metal Contact	Thin Insulator Gate
▼ Uniform Region	▼ Uniform Region	Label: Relectrode	Label: N electrode	Label: Thin Insulator Gate 1
Bace	Baro	Label. I electrode		 Boundary Selection
Compr	Correct	 Boundary Selection 	 Boundary Selection 	Selection: Manual
Conter .	Corner •	Selection: Manual	Selection: Manual	15
base position:	base position:	12	18	
Γ ₀ 2 ² wp+wppd+wtg-wp X tsub+tepi-timp Y m	r ₀ Wp X tsub+tepi-timp Y m	14		
Width:	Width:			
W Wp m	W Wood m			Override and Contribution
Depth:	Denth:			Equation
D time m		Override and Contribution	> Override and Contribution	Continuation Settings
		Equation	Equation	 Terminal
▼ Profile	 Profile 	▼ Terminal	▼ Terminal	2
Profile away from uniform region:	Profile away from uniform region:	Terminal name:	T	Terminal type:
Gaussian	Gaussian	1	Terminal name:	Voltage
Specify profile length scale:	Specify profile length scale:	Terminal tuner	3	Voltage:
Junction depth	Junction depth	Veltana	Terminal type:	V ₀ 0[V]
Specify different length scales for each direction	Specify different length scales for each direction	voitage	Voltage	▼ Gate Contact
Junction depth:	Junction depth:	voitage:	Voltage:	Oxide relative permittivity:
<i>d</i> _i 0.1[um] m	d: 0.1[um]	V 0 0[V]	V ₀ V_fd	€ ins e_ox
Background doping concentration:	Background doning concentration:	▼ Contact Type	▼ Contact Type	Oxide thickness:
N _b User defined	N _k User defined	Type:		d _{ins} tox
1016[1/m/3]	······································	Ideal ohmic	lype:	Metal work function:
icrotition of	Tero[i/cm^b]		Ideal ohmic	A. antal

3. Mesh

In order to optimize the mesh around the regions where we expect the largest doping and electric field gradients, we have split the geometry through lines in the former geometrical definitions. As a consequence, you can now use a free triangular meshing, with three different meshing regions. Below is an example of a good mesh distribution. Mesh 1
 Size
 Free Triangular 1
 Size 1
 Size 2
 Size 3

Settings Size Build Selected Build All Label: Size 1 Geometric Entity Selection Geometric entity level: Domain Selection: Manual 1 3	Settings Size Size Build Selected Build All Label: Size 2 Geometric Entity Selection Geometric entity level: Domain Selection: Manual	Settings							
Element Size	Element Size	Element Size							
Calibrate for:	Calibrate for:	Calibrate for:							
General physics	General physics •	General physics •							
Predefined Finer	O Predefined Normal	Predefined Extremely fine							
O Custom	Custom	 Custom 							
 Element Size Parameters 	 Element Size Parameters 	▼ Element Size Parameters							
Maximum element size:	☑ Maximum element size:	Maximum element size:							
5.55E-7	0.03e-6	1.5E-7 m							
Minimum element size:	Minimum element size:	Minimum element size:							
1.88E-9	5e-9 r	3E-10 m							
Maximum element growth rate:	Maximum element growth rate:	Maximum element growth rate:							
1.25	1.2	1.1							
Curvature factor:	Curvature factor:	Curvature factor:							
0.25	From sequence	0.2							
Resolution of narrow regions:	Resolution of narrow regions:	Resolution of narrow regions:							
1	From sequence	1							

The resulting mesh is shown below, with colors separating the differently meshed regions, and the names of the "Size X" regions indicated in the boxes above.

4. Study and results

Set the stationary solver options as indicated below. Right click on *Study* and click on *Compute*. Regardless of the solution convergence, we can have a first look at the correctness of the doping profiles. This is independent of the actual solution, which computes electron and hole concentration, and voltages, but no the native doping values which are a boundary condition.

In order to properly visualize the results, it is better to adapt the color scale (set manual color range) as in the image below. On the left, you see the various doping regions that we have effectively added.

Settings																	
Surface																	
on Plot																	
Label: Surfa	ice 1																F
🔻 Data																	
Dataset: F	rom	par	rent													•	Ξ1
	n												-	→	÷.	-	-
Expression:																	
semi.Ndopin	a																
Unit	.9																
1/m \ 3																	
Descript	lien																•
Cinerad alarm	uon:			- 45	_												
signed dopa	int o	JHC	entr	atior	1												
> Title																	
▼ Range																	
🗹 Manual	color	ran	nge														
Minimum:	-3E	23															
1.1.1.1	1	1	1	1	1		1	1	1	1	1	1	1	1		1	1
1.1.1		1	1	\mathbf{r}				1			1	1	1	1		1	1
Maximum:	2E2	3															
					÷		÷				ċ		·		•	·	
1 1 1	•			•						•		•	•		•		
. Manual																	
🗌 Manual	data	ran	ge														
Manual Minimum:	data	ran 009	ge 998	E24													
Manual Minimum:	data	ran 1009	ge 998	E24							•				-		-
Manual Minimum:	data -1.1	ran 100!	ge 998 , 97E	E24	•	•	•	•	•	1			1		•	1	-
Manual Minimum:	data -1.1 8.9	ran 1009 899	ge 998 97E	E24	•	1	•	•	1	•	•	-	-		1	1	-

The study may or may not converge on your computer, depending mostly on doping profile and mesh implementation, on simulation settings, and on computer capabilities... Regardless of the convergence or not, you still may be able to see a decent solution (even if the convergence does not reach the expected target).

Qualitatively, you will be able to see an energy band graph as shown below (see also the plot settings, and enable Height Expression). We note two points, which you will deepen in future lectures: (i) the energy hole for electrons (where photogenerated carriers are gathered) is clearly visible. However, unlike for simple PN junctions, this hole is not in contact with the surface, avoiding the collection of dark electrons generated by impurities close to the surface, thus reducing the dark current; (ii) a second small valley for electrons is visible close to the left surface corner in the image. When activating the transfer gate, which essentially behaves like a transistor, you will be able to transfer all electrons gathered inside the pinned photodiode into the floating diffusion, thus separating the region of collection from the integration capacitance.