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Problem

After a request from a mobile phone company, your audio start-up needs to design a
novel MEMS microphone. The schematic of the device is shown in Fig. 1. The system
parameters are reported in Table 1. You are asked to. . .

1. Choose the diameter of the membrane in order to comply with noise requirements,
aiming at a well-balanced sensor in terms of noise performance. Calculate then the
electromechanical sensitivity [in fF/Pa].

2. Calculate the required bias voltage, VDC , in order to have a well-balanced sensor
in terms of noise performance.

3. Size the feedback network of the front-end and plot the �nal transfer function from
input pressure to output voltage.
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Structure

Membrane thickness h 1 µm

Vertical gap g 1 µm

Poly-Si density ρ 2390 kg/m3

Normalized damping coe�cient barea 350 N/(m/s)/m2

Electronics

Parasitic capacitance CI 5 pF

Op-amp voltage noise sn,OA,v 20 nV/
√
Hz

Maximum analog voltage swing Vmax ± 2.5 V

Requirements

Min. detectable pressure pa,min,dBSPL 33 dBSPL

Max. detectable pressure (acoustic overload point) pa,max,dBSPL 123 dBSPL

Min. detectable frequency fmin 20 Hz

Max. detectable frequency fmax 20 kHz

Table 1: Parameters of the microphone.

Figure 1: MEMS microphone sketch and spring-mass-damper formulas.

Figure 2: MEMS microphone model.

Introduction

A MEMS microphone is, as usual, a dual-die device consisting of two components, the
integrated circuit and the sensor. The sensor uses MEMS technology and is basically a
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single-ended polysilicon capacitor, consisting of two plates/surfaces. One plate is �xed
while the other one can deform under the action of an AC pressure (respectively, the
green plate and the grey one shown in Fig. 1). The �xed surface is full of acoustic holes,
allowing sound to pass through. A ventilation hole allows the air compressed in the
back chamber to �ow out and consequently allows the membrane to move back, with no
de�ection under DC pressure. A simpli�ed model is reported in Fig. 2. The integrated
circuit converts the change of the MEMS capacitance into an analog output.

The input signal of a microphone is sound pressure, p. Sound pressure (or acoustic
pressure) is the local pressure deviation from the ambient (average, or equilibrium) at-
mospheric pressure. An AC sound pressure wave can be described as

p = pa sin (2πfat) ,

where fa is the acoustic frequency. The acoustic frequency range is de�ned from 20 Hz
to 20 kHz. Usually, sound pressure is expressed in dBSPL:

pSPL = 20 log10
pa
pref

,

where pref is the reference pressure,

pref = 20 µPa, pref,SPL = 0 dBSPL,

which is commonly considered as the threshold of human hearing (roughly the sound of
a mosquito �ying 3 m away). Fig. 3 reports examples of sound levels.
We can thus easily translate our requirements in pascals:

pa,min = pref · 10

(pa,min,SPL

20

)
= 893 µPa,

pa,max = pref · 10

(pa,max,SPL

20

)
= 28.3 Pa,

that corresponds to a quiet whisper and a loud rock concert. Given the frequency range
of interest, we can determine the input-referred pressure white noise density, by simply
dividing the minimum detectable signal by the bandwidth of our sensor, i.e. the whole
audio range:

sn,p =
pa,min√

fmax − fmin
≃ pa,min√

fmax
= 6.31 µPa/

√
Hz.

Given a certain pressure, p, applied to the membrane, the corresponding applied force
can be simply evaluated as

F = pA = pπr2,

where A is the membrane area and r its radius. The force F is a uniformly distributed
action that causes a certain displacement of the membrane.
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Figure 3: Sound level examples.

To be more precise, the membrane de�ects if there is a pressure di�erence between its two
sides. As one can observe from Fig. 1, both the chambers faced by the membrane are kept
at the atmospheric pressure, so that the DC displacements induced by the atmospheric
pressure are canceled; the pressure di�erence applied to the membrane, pm, is

pm = (patm + psound)− patm = psound.

It can be demonstrated (e.g. in I. O. Wygant, M. Kupnik and B. T. Khuri-Yakub, Ana-
lytically calculating membrane displacement and the equivalent circuit model of a circular

CMUT cell, in 2008 IEEE Ultrasonics Symposium, Beijing, 2008, pp. 2111-2114) that a
vibrating membrane can be well-approximated as a 1D mass-spring-damper system (Fig.
4). This 1D model is de�ned in this way: given a uniformly distributed force applied
onto the membrane, the dynamic behavior of the membrane can be equivalently modeled
as a 1D piston that uniformly moves in the y-direction, whose mass is m, whose spring
constant is km, and whose damping coe�cient is b. For a circular membrane of radius r,
the 1D parameters are

km = 16 · Eπh3

r2
, m = πr2hρ, b = bareaπr

2.

The resonance frequency of such a membrane can be evaluated as

fr =
1

2π

√
km
m
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Figure 4: 2D vs 1D model of the membrane.

The model is de�ned in such a way that, given a certain force F applied to the membrane,
the corresponding displacement

y =
F

km
,

represents the average displacement of the membrane (see Fig. 4).

Question 1

The diameter of the membrane can be chosen from noise speci�cations. Aiming at a
well-balanced sensor in terms of noise performance, we get:

sn,MEMS,p = sn,ELN,p, sn,TOT,p =
√
2sn,MEMS,p =

√
2sn,ELN,p,

i.e.
sn,MEMS,p =

sn,TOT,p√
2

,

As F = Ap, input-referring MEMS thermo-mechanical noise, we get

sn,MEMS,p =
sn,MEMS,F

A
=

√
4kbTb

A
=

√
4kbTbareaA

A
=

√
4kbTbareaπr2

πr2
.

And we can hence derive the required radius:

r =

√
4kbTbarea

π
sn,TOT,p√

2

= 304 µm.
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Given the membrane radius, we infer the 1D mass-spring-damper equivalent coe�cients:

km =
16πEh3

r2
= 81.5N/m,

m = πr2hρ = 0.69 nkg,

b = bareaπr
2 = 101 · 10−6 N/(m/s).

So that the resonance frequency and the quality factor become:

fr =
1

2π

√
km
m

= 54 kHz, Q =
2πfrm

b
= 2.3

Given the 1D model of the mechanical structure, we can easily report its mechanical
transfer function, as

G (jω) =
Y (jω)

F (jω)
=

1

km + jωb− ω2m
,

where F is the applied force. As we are dealing with a microphone, i.e. a (sound) pressure
sensor in the acoustic frequency range (20 Hz - 20 kHz), we can more conveniently
evaluate the mechanical transfer function of our microphone as the displacement divided
by the input pressure. As F = πr2p,

T (jω) =
Y (jω)

P (jω)
= πr2

1

km + jωb− ω2m
,

whose magnitude is reported in Fig. 5.
Note that this is a good dynamic behavior! Indeed, as we are working with a very
large signal bandwidth, the best choice for our structure is to have the resonance fre-
quency outside the frequency range of interest (like in accelerometers), possibly with a
low quality-factor, in order to reject under-damped-related phenomena, such as long time
constant, overshoots, . . . The 54 kHz value of the resonance frequency is thus perfect for
bandwidth constraints, as it automatically �lters out any force/pressure at frequencies
higher than the audio range (e.g. ultrasound).
As, for microphone purposes, we are working at frequencies lower than the resonance
frequency, our microphone can be equivalently modeled as the spring constant only. As
our input is a pressure, we can more conveniently de�ne the mechanical sensitivity of our
sensor, ∂y/∂p, de�ned as the ratio between the average membrane displacement, y, and
the pressure, p:

∂y

∂p
= |T (ω)|ω≪ωr

=
πr2

km
=

πr2

16πEh3

r2

=
r4

16Eh3
= 3.56 nm/Pa.

How can we read out the pressure-induced displacement? The variable-gap structure
is basically a single-ended variable gap capacitor, whose capacitance variation can be
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Figure 5: Transfer function modulus of the sensor, from sound pressure to displacement.

easily read-out with a TCA-based front-end. We can calculate the rest capacitance of
the structure and its variation per unit y-axis displacement

C0 =
ε0A

g
=

ε0πr
2

g
= 2.57 pF,

∂C

∂y
=

C0

g
=

ε0πr
2

g2
= 2.57 fF/nm.

Combining the equations above, we get an overall electromechanical sensitivity of 9.2
fF/Pa. The previously calculated thermo-mechanical noise can be re-calculated as ca-
pacitance noise:

sn,MEMS,C = sn,MEMS,p
∂y

∂p

∂C

∂y
= sn,MEMS,F

1

km

∂C

∂y
= 40.9 zF/

√
Hz,

�at within the whole frequency range of interest. Our hypothesis of a well-balanced
sensor is satis�ed if the input-referred noise of the front-end is equal to 40.9 zF/

√
Hz.

Question 2

The readout electronics system is reported in Fig. 6. The membrane is biased at VDC

with a dedicated voltage supply, while the other electrode is connected with the virtual
ground of the front-end. The transfer function of the front end is

Vout(s)

I(s)
= − RF

1 + sRFCF
.
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Figure 6: MEMS microphone redout system.

Remembering that

i =
∂C

∂t
VDC , I (s) = sVDCC (s)

we can re-evaluate the transfer function of the TCA, now de�ned as the ratio between
the output voltage, Vout, and the capacitance variation C, as

TTCA(s) =
Vout(s)

C(s)
= −sVDC

RF

1 + sRFCF
,

which introduces a high-pass �ltering action, whose pole frequency is

fp =
1

2πRFCF
.

If the pole frequency is designed to be equal to (or lower than) the minimum signal
frequency, 20 Hz, the gain of the TCA (in the audio range) is �at and equal to

∂Vout

∂C
= |TTCA (ω)|ω≫ωp

=
VDC

CF
.

The input-referred noise of the front-end, assuming that the dominant noise source is the
voltage noise of the op-amp, can be expressed as

sn,ELN,C = sn,OA,v

1 +
CP

CF

VDC

CF

≃ sn,OA,v
CP

VDC
.

In the previous expression, we assumed CP ≫ CF . Note that, as shown in Fig. 6,
the parasitic capacitance is given by the sum of two contributions: the interconnections
capacitance (wire bonding + chip metal wires), modeled as CI , and the DC (rest) capac-
itance of the membrane, C0, that contributes, as well, to the calculation of the overall
capacitance from the virtual ground to ground:

CP = CI + C0 = 7.57 pF.
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The DC bias voltage, VDC , that forces electronics noise to be equal to MEMS thermo-
mechanical noise is thus:

VDC =
sn,OA,vCP

sn,ELN,C
=

sn,OA,vCP

sn,MEMS,C
= 3.70V.

Question 3

The feedback capacitance of the TCA determines the gain of the front-end,

∂Vout

∂C
= |TTCA (ω)|ω≫ωp

=
VDC

CF
.

It can be sized in such a way that, given the maximum capacitance variation (that
corresponds to the maximum displacement, i.e. to the maximum sound pressure), the
output voltage variation is equal to Vmax:

Vmax =
VDC

CF
Cmax,

where Cmax = 259 fF from the previous formulas at the FSR of 28.3 Pa. Hence,

CF =
VDCCmax

Vmax
= 383 fF.

A short comment about non-linearity. The linearity error, ϵlin, of a single-ended parallel-
plate-based capacitance measurement can be evaluated as

ϵlin =
∆Creal −∆Clin

∆Creal
=

(
ε0A

g − y
− ε0A

g

)
− ε0A

g2
y

ε0A

g − y
− ε0A

g

= · · · = y

g
.

This means that, with the previously calculated maximum displacement, about 100 nm,
the linearity error is about 10%! Remember that, if the capacitance measurement is
di�erential, the linearity error can be expressed as

ϵlin,diff =
∆Cdiff,real −∆Cdiff,lin

∆Cdiff,real
= · · · =

(
y

g

)2

.

Hence, if the readout was di�erential, with the same maximum displacement, the linearity
error would be much lower, in the range of 1%. This is why a di�erential readout would
be bene�cial. Given a feedback capacitance of 383 fF, the required feedback resistance,
in order to have a pole frequency at 20 Hz is Rmax = 1

2πCF fp
= 20GΩ.

The overall transfer function of the sensor, de�ned as the ratio between the output voltage
and the input pressure, is

TTOT (jω) =
Vout (jω)

P (jω)
= −πr2

1

k + jωb− ω2m

∂C

∂y
jωVDC

RF

1 + jωRFCF
,

whose magnitude, reported in Fig. 7 resembles a pass-band �lter where the bass-band
frequency range is, correctly, the frequency range of interest! Note that this theoretical
frequency response is very similar to an experimental one (see again Fig. 7). Fig. 8
reports a photograph of the membrane of a commercial MEMS microphone.
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Figure 7: Magnitude of the mechanical transfer function of the sensor, from sound pres-
sure to displacement (left), compared to the results on a real microphone.

Figure 8: SEM photograph of the mem-
brane of a MEMS microphone.
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