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Problem

Working as a consultant for an analog company, you have to conceive the electronics to
sustain the drive oscillation of MEMS gyroscopes for autonomous driving. The system
shall guarantee a maximum sensitivity variation of ±1.5% within automotive tempera-
tures (−45◦C to 125◦C). The drive resonator is single-ended actuated and sensed.
The drive loop, shown in Fig. 1, is formed by a CA front-end, a di�erentiator and a hard-
limiter with a dedicated supply. The complete drive oscillator with both primary loop
and AGC is shown in Fig. 2. The di�erential INA gain is given as GINA = 1 + 49.4 kΩ

RINA
.

The variable-gain is implemented by acting on the supply voltage of the hard-limiter.
Other electromechanical parameters are listed in Table 1.

1. Size the parameters of the primary loop only (Fig. 1), in order to obtain the target
displacement amplitude, xa0, at the reference temperature (313 K).

2. Considering the primary loop only (Fig. 1), calculate the maximum percentage
variation of the drive amplitude, and evaluate the required compensation factor.

3. Size the parameters of the secondary (AGC) loop of the drive-mode oscillator (Fig.
2), considering the requirement on the maximum sensitivity variation.

4. Size the low-pass �lter of the control loop.
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Mechanical

Symbol Value

Drive resonance frequency frd 20 000 Hz

Drive Q-factor @ 300 K Qd0 8000

Internal mass mi 1.5 nKg

External mass me 2.5 nKg

Process thickness h 24 µm

Gap g 1.8 µm

Number of drive comb �ngers NCF 20

Target drive displacement amplitude xa0 5 µm

Electronics

Rotor bias voltage VDC 5 V

Ampli�er voltage output swing VO ±4 V
Minimum capacitance Cmin 0.2 pF

Secondary (AGC) loop

Recti�er gain GREC 1

LPF gain GLPF 1

LPF resistance RLPF 3 MΩ

Table 1: Parameters of the gyroscope (half structure).

Figure 1: Primary loop of the drive oscillator.
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Figure 2: Drive oscillator with AGC.

Introductory comments

A MEMS gyroscope can be modeled as a resonator along the drive axis and an accelerom-
eter along the sense axis, to detect sinusoidal motion induced by the Coriolis force.
The primary loop is needed to start and sustain the oscillation of the resonator at its
resonant frequency. In this example, we will use a topology formed by a TCA-based
front-end, that senses drive motion and provides an output voltage proportional to the
drive displacement, followed by a di�erentiator, needed to obtain an overall 360◦ phase
shift at resonance; regarding the drive actuation circuitry, instead of having a hard-limiter
followed by the de-gain stage, the voltage amplitude reduction is obtained by supplying
the comparator (hard-limiter) itself with a dedicated supply voltage, VHL.
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Question 1

We want to calculate the actuation voltage amplitude va, to be applied to the actua-
tion electrode in order to get the desired displacement amplitude xa0 at the reference
temperature. We know that, if a MEMS resonator is actuated at resonance, assuming a
small-signal hypothesis on the actuation voltage, the displacement amplitude is

xa =
Qd

kd
ηdva.

In our case, Qd is the quality factor of the drive resonator, kd is the drive mode sti�ness,
ηd is the drive-actuation transduction coe�cient, and vda is the drive-actuation sinusoidal
voltage amplitude. We know that

ηda = VDC
∂Cda

∂x
,

where VDC is the DC voltage between the rotor and the stator electrode, and ∂Cda/∂x is
the drive-actuation capacitance variation per unit displacement. With data of Table 1,

∂Cda

∂x
=

2ϵ0hNCF

g
= 9.44 fF/µm, ηda = VDC

∂Cda

∂x
= 47.2 · 10−9 N/V.

As the resonator is symmetric, ηd = ηda = ηdd = 47.2 · 10−9 A/(m/s). We can then
calculate the drive mode sti�ness of the gyroscope:

kd = (2πfrd)
2md = (2πfrd)

2 (me +mi) = 63.2N/m.

And we can �nally evaluate the amplitude of drive-actuation sine-wave voltage required
to obtain the target displacement amplitude:

vda =
xaηda
Qdkd

= 836mV.

Remember that, with the circuit topology we are using, the voltage signal applied to the
drive electrode is the hard-limiter output, which is a square-wave. Taking into account
the 4/π factor:

vda,sq =
vda
4/π

= 0.66V.

This means that the hard-limiter should be biased (VHL) between −0.66 V and +0.66 V
at the reference temperature.
Note that vda = 0.836 V is much lower than the rotor-stator DC voltage (5 V) and the
small-signal hypothesis is thus valid.

We can evaluate the motional current amplitude �owing through the drive-detection port
of the drive resonator,

ima = xaηd (2πfrd) = 29.6 nA,
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and the drive-detection capacitance variation amplitude,

Cdda = xa
∂Cdd

∂x
= 47.2 fF.

With a TCA-based front-end, the output voltage amplitude can be calculated as

VTCA,out,a = GTCACdda = |TTCA (frd)|Cdda =
VDC

CF
Cdda,

or, equivalently,

VTCA,out,a =
1

(2πfrd)CF
ima.

A good design approach to choose the TCA gain would be to maximize it. This maximum
gain shall ideally be the highest value that prevents any saturation of the TCA output.
Since the ampli�er voltage output swing (VO) is ±4 V, given the previously calculated
ima and Cdda, the desired feedback capacitance, ĈF , would be

ĈF =
VDC

VO
Cdda = 59 fF,

which, unfortunately, is lower than the minimum one (200 fF). We will thus choose the
minimum one, CF = 200 fF, which implies an output voltage amplitude:

VTCA,out,a =
1

(2πfrd)CF
Cdda = 1.18V.

For proper TCA behavior, the feedback pole frequency should be, at least, two decades
before the oscillation frequency,

1

2πRFCF
<

1

100
frd,

that corresponds to a (minimum) feedback resistor of 4 GΩ. With this choice, we guar-
antee a small error (lower than 1 deg) on the ideal phase shift of the TCA (90◦).

Regarding the di�erentiator stage, we choose its gain GDIF following the same approach,
i.e. setting an output swing of 4 V. Additionally, �xing its poles two decades beyond
resonance, we get a set of three equations with four unknowns:

GDIF = 2πfrdCDIF1RDIF2 =
4V

1.18V
= 3.38.

fp,DIF =
1

2πCDIF1RDIF1
= 2MHz, fp,DIF =

1

2πCDIF2RDIF2
= 2MHz

In principle, any quartets of the passive components that satisfy the above equations is
a valid solution. A wise choice is to note that CDIF2 appears only at the denominator of
the third equation. As the pole to match has a relatively large frequency, we select the
minimum allowed capacitance value for this component.
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Once this choice id done, the calculation of the other values is straightforward:

CDIF2 = 200fF, RDIF2 =
1

2π · 2MHz · 200fF
= 398kΩ

CDIF1 =
GDIF

2πfrdRDIF2
= 67.8pF, RDIF1 =

1

2π · 2MHz · 67.8pF
= 1.1kΩ

All the found values are suitable for integration within a CMOS IC technology.

Question 2

The sensitivity of a MEMS gyroscope is proportional to the displacement amplitude of
the drive-axis oscillation, xda:

S ∝ xda.

In absence of an amplitude-control loop, i.e., in presence of a �xed drive-actuation voltage
amplitude, vda, the drive displacement amplitude depends on the quality factor,

xda =
Q

k
ηdavda.

In presence of temperature variations, the quality factor changes and, in turn, the drive-
displacement amplitude changes. As seen in a previous class, the quality factor variations
vs temperature variations can be roughly approximated with the following linearization,

∆Q

Q
= −1

2

∆T

T
.

Since
∆T

T
=

170K

300K
≃ 56%,

the quality factor variation is about −28%. The sensitivity variation within the whole
temperature operating range is estimated as:

∆S

S
=

∆xda
xda

=
∆Q

Q
= −1

2

∆T

T
= −28%.

A 28% sensitivity variation is too high for a high-performance product. For this reason,
an AGC loop must be implemented in the drive oscillator of a gyroscope. As the the
maximum allowable variation is 1.5%, an open-loop-actuated drive resonator would not
ful�ll the requirement. We need to introduce a compensation (control) loop, to reduce
the displacement amplitude variations by a factor (at least) 28%/± 3% ≃ 10. This is, in
practice, the minimum value required by the AGC loop gain.
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Question 3

To control the drive displacement amplitude, an AGC (automatic gain control) loop is
introduced in most vibratory MEMS gyroscopes. The control circuit is designed as a
negative feedback loop. Its raw schematic is reported in Fig. 3. We can consider the
voltage di�erence VD − VREF as the error signal of our negative feedback loop:

ε = VREF − VD = VREF
1

1 +Gloop
.

If the loop gain is su�ciently high, the error is ≃ 0, hence VD ≃ VREF . In other words
VD behaves as the virtual ground of our negative feedback, as shown in Fig. 3.

Figure 3: AGC as a negative feedback system: note how the MEMS represents the for-
ward path from input voltage (force) to output displacement.

If the gain KV CA from the drive displacement amplitude, xda, to the DC value VD,
including the front-end and AGC stages, is known and constant,

VD = KAGCxda, xda =
VD

KAGC
, xda,ref =

VREF

KAGC

so that choosing VREF is equal to choosing a certain reference drive displacement ampli-
tude, xda,ref , and the loop would force xda ≃ xda,ref , as shown in Fig. 3.

Without excessive theoretical demonstrations, it is intuitive to �nd out how the loop gain
value acts on the variability of the gyroscope sensitivity to temperature changes. Indeed,
this variability is inherent to the MEMS transfer function, so it falls in the forward path
between applied voltage and displacement. Conversely, in a system based on a negative
feedback, we know that the gain is ideally set only through the feedback branch (KV CA),
and that the e�ects of the variability of elements in the forward path to the closed-loop
gain is reduced by approximately the loop gain. We can thus conclude that the relative
displacement amplitude variation is now:

∆xda
xda0

=
∆Q

Q0

1

1 +Gloop0
=

(
1

2

∆T

T0

)
1

1 +Gloop0
.

Hence, variations on the gyroscope sensitivity, which is linear with the drive displacement
amplitude, are reduced by a factor 1+Gloop0 as well, when the AGC loop is introduced.
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As the required compensation factor found in the previous point is 10, we will design the
AGC loop with a target loop gain a litlle larger than this, e.g. of 20, so to account for
the variability of the Gloop itself with temperature. The drive displacement behavior as
a function of temperature with the control loop is reported in Fig. 4.

Figure 4: Drive displacement amplitude as a function of temperature variations, for dif-
ferent situations.

Note that the previously de�ned xda0 represents the drive displacement amplitude at the
reference temperature. With a loop gain equal to 20, xda0 = 4.76 µm, i.e., ≃ 5% lower
than the target value, 5 µm. However, its variability is limited as expected.

We are now ready to evaluate the loop gain. Referring to Fig. 5, the loop gain we are
going to calculate is the one marked as Gloop,AGC .
To calculate its value, we can (i) open the loop (possibly at the output of a low-impedance
voltage source or at the input of a high-impedance ampli�er), (ii) inject an amplitude

variation as our test signal (i.e. apply an amplitude modulation to the ideally harmonic
signal generated by the drive loop), and (iii) evaluate the quantity that returns to where
the loop was cut.
Keep in mind that all calculations should be done on the amplitude variations of the

sinusoidal or DC signals, which is what the AGC acts on. Additionally, we begin by
calculating it for quasi-stationary variations of the input (i.e. for slow changes of tem-
perature and Q factor). The loop is composed by the following stages:

1. A full-wave recti�er (FWR), which, given a sine-wave at its input, outputs the
fully-recti�ed waveform:

VFWR,in (t) = (VCA + va) sin (ω0t) → VFWR,out (t) = (VCA + va) |sin (ω0t)| ,
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Figure 5: Complete drive-mode oscillator. The signal path of the amplitude loop is high-
lighted.

VCA being the nominal amplitude of the oscillating signal at the CA output, and
va being the small amplitude variation we are applying to evaluate the loop gain.
As there is no change in amplitude, the gain of the FWR is simply 1.

2. A low-pass �lter (LPF) that extracts the DC component (i.e. the mean value) of
its input signal. You can easily verify that the mean value of a recti�ed sine-wave
is 2/π:

VLPF,out (t) = mean [(VCA + va) |sin (ω0t)|] =
2

π
(VCA + va)

The gain of the LPF on the amplitude variation va is therefore 2/π.

Here the LPF is implemented with a single-pole RC low-pass �lter, but we are free
to choose other topologies.

3. A di�erential gain stage, implemented with an instrumentation ampli�er (INA).
The INA output is bu�ered (±1) to the positive and negative supply of the hard-
limiter. With this topology, given a certain INA output voltage, Vout,INA, the drive
actuation signal is

Vda (t) = VINA,outsqw (ω0t) ,

that describes a square-wave signal at ω0, that toggles between +VINA,out and
−VINA,out. The combination of the INA and hard limiter yields thus a gain of
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GINA · 4/π on the signal amplitude (and thus on the test amplitude variation we
applied).

4. the MEMS at the resonance frequency just corresponds to a gain of 1/Req.

5. Finally, the TCA gain at resonance just corresponds to /(ωrdCF ).

The AGC loop gain is thus the combination of the mentioned gains:

Gloop,AGC =
2

π
GINA

4

π

1

Rmd

1

(2πfrd)CF
=

2

π
GINA

4

π

η2d
bd

1

(2πfrd)CF

The damping coe�cient and in turn the equivalent resistance can be calculated as:

Rmd =
bd
η2d

=
2πfrdm

Qdη
2
d

= 28.2MΩ

Targeting a loop gain of 20, the INA gain, GINA, should in the end be:

GINA =
Gloop,AGC

2

π

1

(2πfrd)CF

1

Rmd

4

π

= 17.49,

that can be obtained with an INA gain resistance of RINA = 49.4 kΩ
GINA−1 = 3.00 kΩ.

Question 4

We have to size the low-pass �lter of the AGC loop. As the gain of the LPF is unitary,
the transfer function of the LPF can be expressed as

VLPF,out (s)

VLPF,in (s)
=

1

1 + sRLPFCLPF
.

From a spectral point of view, the signal at the input of the FWR is a pure tone at ωrd;
on the other hand, the recti�ed signal will have a DC tone, whose amplitude is 2/π times
the amplitude of the input sine-wave, and other harmonics, as shown in Fig. 6. The only
harmonic that we want is at DC, proportional to the drive amplitude. The �lter role is
to cut out all other harmonics. As temperature variations have a very narrow bandwidth
(such variations are very slow), we could place the pole at low frequency. How low? As in
every negative feedback, the choice of the poles is related to stability. In other words, we
evaluated the DC loop gain, Gloop0, but what about the loop gain at other frequencies?
One can demonstrate that all the stages can be modeled as a frequency-independent
gain, except for the MEMS resonator and the LPF. Indeed, when dealing with actuation-
voltage amplitude variations, the resonator can be modeled (see Appendix) as a base-
band equivalent system whose transfer function is

Ia (s)

Va (s)
=

1

Rm

1

1 + s
2Q(s)

ωo

.
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Figure 6: Action of the AGC loop low-pass �lter.

Be careful! This is not the ratio between motional current and actuation voltage! This is
the ratio between motional current amplitude variations and actuation voltage amplitude

vriations, when actuated at resonance. The variable s here refers only to the frequency
content of the Q factor changes! The frequency-dependent AGC loop gain can be thus
written as

Gloop,AGC = GINA
2

π

1

(2πfrd)CF

1

Rmd

4

π

1

1 + s
2Q

ωrd

1

1 + sRLPFCLPF
.

This is a two-poles system, where the �rst pole frequency, due to the MEMS, is given,

fp1 =
1

2π
2Qd

ωrd

=
frd
2Qd

= 1.25Hz,

while the second one, fp2 depends on the LPF design. As in every negative feedback
loop, to ensure the stability of the loop, the second pole of the loop gain should be just
higher than the gain-bandwidth product (GBWP) of the loop. In other words,

fp2 ≥ Gloop0 · fp1 = 25Hz, CLPF =
1

2π · (Gloop0 · fp1) ·RLPF
= 2.12 nF,

This is the minimum pole frequency of the LPF, for which a 45◦ phase margin is ensured.
The situation is represented in Fig. 7. All the components have thus been sized.
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Figure 7: Loop gain of the AGC for
di�erent �lter sizing.

Facultative appendix: base-band model of a

mass-spring-damper system for actuation amplitude

variation effects

A mass-spring-damper system is modeled in the Laplace domain as:

X (s)

F (s)
=

1

k

1

1 + s
Q

ωo
+

s2

ω2
o

.

Assume an external force, F , in the form F (t) = Fa (t) sin (ωot), where Fa is the slowly
varying amplitude of the force and ωo is the structure resonance. As actuation occurs at
resonance, displacement, velocity and acceleration are sinewaves as well:

x (t) = −xa (t) cos (ωot) .

ẋ (t) = −ẋa (t) cos (ωot) + xa (t)ωo sin (ωot) ,

ẍ (t) = −ẍa (t) cos (ωot) + 2ẋa (t)ωo sin (ωot) + xa (t)ω
2
o cos (ωot) .

Hence,
m

(
−ẍa (t) cos (ωot) + 2ẋa (t)ωo sin (ωot) + xa (t)ω

2
o cos (ωot)

)
+

+b (−ẋa (t) cos (ωot) + xa (t)ωo sin (ωot)) + k (−xa (t) cos (ωot)) = Fa (t) sin (ωot) ,

which can be re-written as

[2ẋa (t)mωo + xa (t) bωo − Fa (t)] sin (ωot) = 0,[
−mẍa (t) + xa (t)mω2

o − bẋa (t)− kxa (t)
]
cos (ωot) = 0

We can re-write the �rst equation as

2ẋa (t)mωo + xa (t) bωo = Fa (t) ,

which can be rewritten in Laplace domain:

2smωoXa (s) + bωoXa (s) = Fa (t) , Xa (s) [2smωo + bωo] = Fa (t)
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Xa (s)

Fa (s)
=

1

2smωo + bωo
=

Q

k

1 + s
2Q

ωo

.

This is the base-band model of a MEMS resonator when dealing with slow variations of
the actuation signal amplitude. Following the same approach, one can demonstrate that
the baseband-equivalent motional impedance of the resonator can be modeled as:

Ia (s)

Va (s)
=

1

Rm

1

1 + s
2Q

ωo

.

This frequency dependent behavior should be taken into account when dealing, e.g., with
the AGC stability, i.e., when the transfer function of the amplitude variations of the signal

is of concern.
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