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Problem

You work in a startup developing innovative gyroscopes for rehabilitation after vestibular
disorders. You are asked to design a tuning-fork MEMS gyroscope that emulates the
semicircular canals. The sensor parameters, for half the structure, are given in Table
1. The drive mode is actuated in a push-pull con�guration through the set of comb
electrodes Cda,1 and Cda,2, with square waves (see Fig. 1). Drive detection stators (Cdd,1

and Cdd,2) are kept to the oscillator front-end virtual ground; the rotor bias is VDC = 10
V. The gyroscope is sketched in Fig. 2.

1. Determine the AGC reference Vref to target a drive amplitude of 7 µm.

2. Evaluate the in-phase and anti-phase drive resonant modes, explaining which frames
and springs they involve. Determine the sense sti�ness to operate in matched mode.

3. Calculate the expression of the electrostatic drive force in the situation described by
the �gures, and, paying attention to the drive con�guration, choose the number of
actuation comb-�ngers to have a nominal 0.5-V peak-to-peak square-wave actuation
voltage.

4. Evaluate the electromechanical sensitivity of the gyroscope in fF/dps.
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General

ε0 8.85 · 10−12 F/m Dielectric constant in vacuum

E 150 GPa PolySi Young's modulus

h 24 µm Process thickness

me 2 nkg External frame mass

mi 2.22 nkg Inner frame mass

g 2 µm Comb and parallel plate gap

Drive

bd 0.5 · 10−7 N/(m/s) Drive damping coe�cient

NCF,dd 30 Number of drive-detection comb �ngers

Lfd 180 µm Drive fold length

wfd 3 µm Drive fold width

nsd 4 Number of drive springs

nfd 2 Number folds for each drive spring

Lftf 155 µm Tuning fork fold length

wftf 3.1 µm Tuning fork fold width

nstf 2 Number of tuning fork springs

nftf 2 Number of folds for each tuning fork spring

Sense

bs 1 · 10−7 N/(m/s) Sense damping coe�cient

nPP 4 Number of di�erential parallel-plate electrodes

LPP 250 µm Parallel plate length

Electronics

CF 500 fF Feedback capacitance

Table 1: Gyroscope parameters. Data are for half device.

Figure 1: Drive
oscilla-
tor.
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Figure 2: Sketch of the whole gyroscope.
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Question 1

In a gyroscope, it is necessary to introduce an automatic-gain-control (AGC) loop in
the drive oscillator. In this way, the displacement amplitude of the drive-axis motion
is controlled and stabilized against part-to-part or temperature-induced changes of the
quality factor.
In our example (see Fig. 1), the di�erential voltage signal taken at the output of the front-
end, Vout, is recti�ed with a full-wave recti�er, and it is then averaged with a low-pass
�lter (LPF). The LPF output voltage, VD, is compared with a reference voltage, Vref .
The error signal is processed, and the loop is then closed. If the loop is properly designed,
i.e., if the loop gain is high, VD is equal to the reference voltage, Vref . Assuming a
constant and well-known gain from xda to VD, controlling Vref is equivalent to controlling

the drive displacement amplitude xda.

Our aim is to calculate the proper Vref that forces xda to be equal to 7 µm. To do
this, we need to evaluate the gain from xda to VD. The half-structure drive-detection
electromechanical transduction factor, ηdd, can be evaluated as

ηdd = VDC
∂Cdd

∂x
,

∂Cdd

∂x
=

2ϵ0NCF,ddh

g
= 6.37 fF/µm, ηdd = 63.7 · 10−9 N/V.

The motional current amplitude �owing through each drive-detection port is

ima = 2ηddxdaωrd,

where the factor 2 takes into account the second half of the device, i.e., takes into account
that the current �owing through the unique drive-detection-1 electrode is twice the one
calculated for half the structure.
Motional currents �owing through the two drive detection ports, im1 (t) = ima sin (ωrdt)
and im2 (t) = −ima sin (ωrdt), are integrated in the feedback capacitance of the TCA-
based front-end. The output voltage variation amplitudes of the TCA are thus

V1,a = −V2,a = ima

∣∣∣∣ 1

jωrdCF

∣∣∣∣ = ima
1

ωrdCF
=

2ηddxda
CF

=
VDC

CF

(
2
∂Cdd

∂x

)
xda = 1.78V.

The di�erential output voltage is thus

Vout,a = V1,a − V2,a = 3.57V.

The sinusoidal voltage signal Vout is then recti�ed and averaged. The recti�cation with
a full-wave recti�er has a gain equal to 2/π. The LPF output is then,

VD = Vout,a
2

π
=

2

π
2
VDC

CF

(
2
∂Cdd

∂x

)
xda = 2.27V.

This means, that, in order to have a 7-µm drive displacement amplitude, the AGC
reference voltage should be set equal to 2.27 V.
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Question 2

A dual-mass decoupled gyroscope presents two fundamental resonances: the anti-phase
drive mode and the sense mode. In general, other spurious modes will be present but,
with the designer care, they will lie at much larger frequencies. An exception is found
along the drive axis, where we unavoidably �nd an additional undesired mode which is
the in-phase drive mode. In a gyroscope, the drive oscillator keeps the anti-phase mode
in stable oscillation at resonance, while the undesired in-phase mode shall not be excited.

In-phase drive mode

The in-phase drive mode is characterized by the simultaneous motion of the two halves
of the structure along the same direction.

� Springs: the displacements of the two halves are equal. The tuning fork springs
(the black folded springs in the middle of Fig. 2) therefore do not bend. Hence,
they do not contribute to the determination of the resonance frequency of this
mode. When estimating the sti�ness of the in-phase mode, kd,ip, the sole springs
that should be taken into account are the drive springs (the green folded springs
in Fig. 2). Considering half of the structure:

kd,ip =
nsd

nfd
Eh

(
wfd

lfd

)3

= 33.33N/m,

where nsd = 4 is the springs number, nfd = 2 is the folds number for each spring.

� Mass: the external, light violet, frames are named drive frames: they move along
the drive direction and they are electrically interfaced with the drive stators. Of
course, this part of the device shall be taken into account in the evaluation of an
in-phase mode. In addition the Coriolis frames (the red inner ones), are as well
dragged during drive motion. For this reason, we can consider the total drive mass
of one half of the device, md, as the sum of the external mass and the inner mass:

md = me +mi = 4.22 nkg.

We thus evaluate the in-phase resonance frequency, frd,ip, as

frd,ip =
1

2π

√
kd,ip
md

=
1

2π

√
2kd,ip
2md

= 14.14 kHz.

Anti-phase drive mode

When the anti-phase drive mode is excited, the two halves of the structure move in
opposite directions.
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� Springs: the tuning fork takes now part into the overall drive sti�ness. During the
anti-phase mode, the two ends of the tuning fork perform the same displacement
while, due to simmetricity considerations, the central point of the tuning fork spring
remains in a steady position. Then, we can consider this point as virtually anchored.
The total drive sti�ness, kd, is the sum of the sti�ness of the drive springs and of
the tuning fork

kd = kd,ap = kip + ktf = kip +
nstf

nftf
Eh

(
wftf

lftf

)3

= 62.13N/m.

where nsd = nfd = 2 is the number of folds for each spring group.

� Mass: the mass is again the sum of the external and the internal frames

md = me +mi = 4.22 nkg.

The anti-phase drive resonance frequency is thus

frd =
1

2π

√
kd
md

= 19.31 kHz.

Note how the in-phase resonance frequency is lower than the anti-phase resonance fre-
quency, their di�erence being due to the tuning fork. In this case the distance is around
5 kHz and, in general, should be kept large to avoid spurious in-phase excitation.

Sense mode

In mode-matched operation, the drive resonance frequency, ωrd, and the sense resonance
frequency, ωrs, are equal. The sense-axis spring constant, ks, can be thus evaluated as

ks = ms (2πfrs)
2 = 32.68N/m.

Note that, for this calculation, we used only the sense mass, ms = mi, equal to the one
of the inner frame.

Question 3

Introduction to push-pull actuation

We have seen how a resonant sine wave of amplitude va can applied to the driving stator
of a resonator, with the rotor kept to a DC voltage VDC . The stator used to detect
the drive displacement is kept to the virtual ground of the drive-detection front-end, as
shown in Fig. 3. This type of 3-port resonator is called a single-ended resonator. In
presence of a square-wave drive actuation, one can equivalently describe the actuation
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Figure 3: Sketch of a single-ended drive con�guration in gyroscopes: we note a single elec-
trical drive signal and a single electrical output current at the virtual ground.

signal through its �rst harmonic only, as other harmonics will be �ltered out by the sharp
resonator transfer function:

va (t) ≃
4

π
va,sq sin (ωrdt) ,

where va,sq is the peak (not peak-to-peak) amplitude of the square-wave.
The net electrostatic force on the proof mass of a single-ended resonator (Fig. 3), if the
number of comb �ngers for the actuation and the detection electrodes is the same, can
be written as:

Fe,d =
1

2

∂Cda

∂x
v2a︸ ︷︷ ︸

dc

+
∂Cda

∂x
VDCva sin (ωrdt)︸ ︷︷ ︸

ωrd

+
1

2

∂Cda

∂x
v2a cos (2ωrdt)︸ ︷︷ ︸
2ωrd

.

The force applied to the resonator has thus three contributions: (i) a DC voltage, (ii) a
contribution at ωrd, (iii) a contribution at 2ωrd. In order to have the 2ωrd component
negligible, we need to guarantee that

va ≪ VDC .

If this condition is satis�ed, neglecting the DC term which is compensated by the force
at the other electrode, we get:

Fe,d =

[
∂Cda

∂x
VDC

]
︸ ︷︷ ︸

ηda

va sin (ωrdt) = ηdava sin (ωrdt) ,

In several situations, this condition is enough to guarantee the proper operation, e.g.,
the Tang resonator we studied in previous classes for time-keeping applications.
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There might be situations, however, for which this condition is not enough. It may
happen, for example, that the device has a spurious undesired mode at a frequency close
to 2ωrd, a typical situation for complex mechanical structures such as MEMS gyroscopes.
Such a mode might be excited by the spurious drive signal at 2ωrd, which must be
avoided. Additionally, as large drive displacements are required, having a constraint on
the amplitude of the applied AC voltage may be itself a limiting factor.

Figure 4: Sketch of a push-pull drive actuation con�guration for MEMS gyroscopes: note
two drive signals and two output di�erential currents.

A commonly-used con�guration to get rid of this issue is the so-called push-pull actuation,
depicted in Fig. 4. Such a con�guration requires to double the number of stators for
both drive actuation and drive detection. This leads to two advantages: (i) the intrinsic
elimination of the 2ωrd component and (ii) the elimination of the small-signal hypothesis
on the AC actuation voltage. Indeed, a push-pull actuation consists in the application
of two AC (sine- or square-wave) signals for the drive actuation with a 180◦ phase delay:

va1 (t) = va sin (ωrdt) , va2 (t) = −va sin (ωrdt) ,

With a push-pull drive actuation, the total electrostatic force can be expressed as:

Fe,d = Fe,da,1 − Fe,da,2 + Fe,dd,1 − Fe,dd,2

Fe,d =
1

2

∂Cda,1

∂x
(VDC + va sin (ωrdt))

2 − 1

2

∂Cda,2

∂x
(VDC − va sin (ωrdt))

2+

+
1

2

∂Cdd,1

∂x
V 2
DC − 1

2

∂Cdd,2

∂x
V 2
DC .
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Assuming that the two actuation electrodes are equal one another, and that the two
detection electrodes are equal one another:

∂Cda,1

∂x
=

∂Cda,2

∂x
≡ ∂Cda

∂x
,

∂Cdd,1

∂x
=

∂Cdd,2

∂x
≡ ∂Cdd

∂x

the drive-detection terms get canceled, and the electrostatic force can be simpli�ed as

Fe,d =
1

2

∂Cda

∂x

[
(VDC + va sin (ωrdt))

2 − (VDC − va sin (ωrdt))
2
]
.

Reminding that (a+ b)2− (a− b)2 = 4ab, with no assumption the equation simpli�es to:

Fe,d =
1

2

∂Cda

∂x
4VDCva sin (ωrdt) =

[
2
∂Cda

∂x
VDC

]
︸ ︷︷ ︸

ηda

va sin (ωrdt) = 2ηdava sin (ωrdt) ,

where ηda is the transduction coe�cient of one drive-actuation electrode. With a comb-
based electrode, the force can be re-written as:

Fe,d = 2
2ϵ0hNCF

g
VDC · va sin (ωrdt) .

As anticipated, the push-pull con�guration eliminates high-frequency spurious tones and
the validity of its harmonic content is not limited to a small signal approximation.
We can now go back to our initial question. A 0.5-V peak-to-peak square-wave driving
has a �rst harmonic of amplitude:

va =
4

π

va,sq
2

= 318mV.

The drive-mode quality factor, Qd, can be calculated as:

Qd =

√
kdmd

bd
= 10 240.

Since

xda =
Qd

kd
2ηdava,

where the factor 2 takes into account the two halves, the target drive-actuation trans-
duction coe�cient is

ηda =
1

2

xda
Qd

kd
va

= 33.4× 10−9 VF/m,
∂Cda

∂x
=

ηda
VDC

= 3.35 fF/µm.

The number of required comb �ngers for each drive-actuation electrode on each half
structure is thus:

NCF,da =

∂Cda

∂x

2ε0
h

g

= 16,
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Question 4

We want now to �nd the mechanical sensitivity of the gyroscope, S, de�ned as the
di�erential sense capacitance variation per unit angular rate. This can be split into two
sub-terms as:

S =
∂Cs,diff

∂Ω
= 2

∂Cs

∂Ω
= 2

∂Cs

∂y

∂y

∂Ω
,

where ∂Cs/∂y is the capacitance variation per unit displacement of one sense port, and
∂y/∂Ω is the sense displacement amplitude variation per unit angular rate. The factor 2
takes into account the di�erential readout. As usual, the capacitance variation per unit
displacement of one sense port, ∂Cs/∂y, can be expressed as

∂Cs

∂y
=

Cs

g
=

ϵ0 (2NPP )LPPh

g2
= 106 fF/µm,

where the factor 2 here takes into account the two halves of the device.
The sense displacement amplitude induced by the Coriolis force, ya, is:

ya =
Qs

ks
Fca =

Qs

ks
2msωrdxdaΩ =

2Qs

ωrs
ωrs

ms

ks
ωrdxdaΩ =

2Qs

ωrs

ωrd

ωrs
xdaΩ.

In mode-match operation, the drive and sense resonance frequencies are equal, hence:

ya =
2Qs

ωrs

��ωrd

��ωrs
xdaΩ ≃ xda

∆ωBW
Ω, ∆ωBW =

ωrs

2Qs

where ∆ωBW is the sense-axis bandwidth. Hence,

∂y

∂Ω
=

xda
∆ωBW

.

The sense-axis quality factor and bandwidth can be calculated as:

Qs =

√
ksms

bs
=

(2πfrs)ms

bs
= 2690 ∆ωBW =

ωrs

2Qs
= 22.52 rad/s = 3.5Hz.

The corresponding variation of the Coriolis frame position per unit angular rate is

∂y

∂Ω
=

xda
∆ωBW

= 310 nm/(rad/s) = 310
nm

180 dps

π rad/s
rad/s

= 5.4 pm/dps

The total capacitance variation per unit angular rate, which is the electromechanical
sensitivity, is thus

S = 2
∂Cs

∂y

∂y

∂Ω
= 66 fF/(rad/s) = 1.15 fF/dps.
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