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Problem

You work in the analog division of a MEMS company. You are asked to design an elec-
tronic oscillator whose frequency-selective element is a MEMS resonator. Its parameters
are listed in Table 1. The minimum capacitance of the chosen circuit process is 200 fF.

Symbol Value

Resonance frequency f0 32768 Hz

Mass m 0.8 nKg

Process thickness h 15 µm

Gap g 1.8 µm

Q-factor @ room temperature (300 K) Q0 2000

Number of comb-�nger structures NCF 70

Rotor DC voltage VDC 5 V

Circuit supply voltage ±VDD ± 3.3 V

Temperature operating range ∆T −45◦ C to +85◦ C

Table 1: Electro-mechanical parameters of the MEMS resonator.

1. Calculate the maximum equivalent resistance, Req,max, of the resonator, considering
the dependence of the quality factor on temperature.
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2. Size the charge-ampli�er-based front-end, used to readout the motional current.

3. An additional stage is needed to close the loop, considering a target displacement
amplitude of the proof frame, xa,max, of 2 µm: describe and size such a stage.

4. Finally, another stage is required to satisfy Barkhausen criteria at resonance: de-
scribe it, choose where to place it, and size it.

Introduction

Reference oscillators are ubiquitous in almost any electronic system and constitute a
multi-billion $ market in electronics industry. Oscillators are used for a wide range of
applications including real-time tracking, clocking of logic circuits and digital data trans-
mission, and frequency up- and down-conversion in RF transceivers. For mainstream
consumer applications, two technologies are distinguished: electromechanical and elec-
trical oscillators. An emerging class of electromechanical oscillators is based on MEMS
technology: the extraordinary small size, high Q factor, low cost and high volume MEMS
manufacturing open wide chances for miniature-scale precision oscillators at low cost.

An oscillator consists of a frequency-selective element, which is the electromechanical
resonator, and a gaining element, which is the feedback circuit. The interface between
resonator and sustaining ampli�er accommodates the transfer of electrical into mechani-
cal energy and vice-versa. The signal of an ideal oscillator is a perfect harmonic: whether
it is a sine wave or a square wave, it can be fully described with its fundamental harmonic,

vo (t) = A · sin (ωot) ,

where A is the oscillation amplitude, and ωo is the oscillation frequency. An oscillator
needs to ful�ll two oscillation criteria in order to enable and sustain a stable oscillation.
The magnitude of the open loop gain, G, at the oscillation frequency ωo should equal
unity, while the phase shift across the loop should equal a multiple of 360◦:

|G (ωo)| = 1, ̸ G (ωo) = 360◦.

The loop gain is de�ned by the combined transfer of the resonator and the sustaining
ampli�er. It therefore depends on the ampli�er topology. In practice, the loop gain is
designed to be larger than unity at the start-up, so that random noise components at
resonance begin to be ampli�ed, each time around the loop. The amplitude increases until
the output runs into some limiting factors, such as the power supply voltage. Output
saturation reduces the e�ective ampli�er gain, so that the loop gain matches unity.

Question 1

The resonator Q-factor is an important parameter for the performance of an oscillator.
It can be de�ned, from energy considerations, as the ratio of the energy stored in the res-
onator, Estored (in the equivalent inductance and capacitance), and the energy dissipated
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by damping (so, by the equivalent resistance) during one resonant period, Ediss:

Q = 2π
Estored

Ediss
= 2π

1/2 · LeqI
2 · 2

1/f0 ·ReqI2
= ω0

m

b

A high Q indicates a low rate of energy loss relative to the stored energy of the resonator.
In other words, the higher is Q, the lower is the energy that has to be provided to the
structure to sustain its oscillation. High Q-factors result thus in low resonator motional
impedance, since Rm is inversely proportional to Q. Low resonator impedance allows
easier oscillator design to meet the Barkhausen conditions.

Given ω0 and m, the Q-factor depends on the damping coe�cient, b. At the pressure
p at which MEMS resonators are usually packaged (10 mbar, or lower), the most rel-
evant dissipative phenomenon is air damping, where energy loss is caused by collisions
between gas molecules and the structure. Intuitively, damping is thus proportional to
the density of gas molecules nmol and to their thermal velocity vmol. Their dependence
on temperature is easily found from (i) the ideal gas law and (ii) thermal agitation:

p · V = nmol ·R · T → nmol ∝
p

kBT

1

2
m · v2mol =

1

2
kB · T → vmol ∝

√
kB · T

As the package is hermetic, the volume inside the package is constant; hence, pressure is
itself proportional to temperature, and the �nal dependence of the damping coe�cient
on temperature becomes:

b ∝ vmol · nmol =
p

kBT
·
√

kB · T ∝
√
T

And we thus approximate the Q factor dependence as an inverse square root law:

Q (T ) = α
1√
T

→ Q (T )
√
T = α

where α is a coe�cient that depends on the parameters of the resonator. As shown in
Fig. 1, this approximation is valid for a wide temperature range around 300 K.
As we learned in previous classes, the equivalent resistance of the resonator, Rm, is
directly proportional to the damping coe�cient, b, hence inversely proportional to Q:

Rm =
b

η2
=

1

η2
ω0m

Q
.

The maximum value Rm,max is found when the Q-factor is the minimum, which, in turn,
is found at the maximum temperature Tmax = 273 K + 85 K = 358 K:

Q(Tmax) = Q(Troom) ·
√

Troom

Tmax
= Qmin = 1831
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Figure 1: Model and experimental measurement of the dependence of the quality factor
on temperature.

With the calculated minimum Q value, we can evaluate the maximum equivalent resis-
tance of the resonator. First of all, we evaluate the damping coe�cient:

bmax =
2πf0m

Qmin
= 90 · 10−9 N/(m/s).

We can �nally calculate the capacitance variation per unit displacement of the resonator,
the transduction coe�cient, and thus the maximum equivalent resistance:

∂C

∂x
=

2ϵ0hNCF

g
= 10 fF/µm, η = VDC

∂C

∂x
= 51 · 10−9 VF/m.

Rm,max =
bmax

η2
= 33.8MΩ.

This is a typical motional resistance value for MEMS resonators in the 10-100 kHz range.
If Barkausen criteria are ful�lled in this worst case, they are then always satis�ed.

Question 2

Before sizing the charge ampli�er (CA), we evaluate the reason to choose a CA front-end
rather than a trans-resistance ampli�er (TRA). The role of the front-end is to read out
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Figure 2: Generic topology of the front-end
stage that reads out the motional
current �owing through the sense
electrode of a MEMS structure.

the motional current and to translate it into a voltage, so that the loop can be closed to
the actuation electrode, which delivers the voltage to compensate for mechanical losses,
ensuring stable oscillation. The motional current is a sine wave,

im (t) = ima sin (ω0t) ,

and we need to design the circuit in such a way that the oscillation frequency e�ectively
matches the resonance frequency, ω0.
The circuit topology is the same for the two cases, as you can see in Fig. 2. Its transfer
function from input current to output voltage is evaluated as:

T (s) =
Vout (s)

Iin (s)
= −

(
RF ∥ 1

sCF

)
= − RF

1 + sCFRF

In a trans-resistance ampli�er (TRA), the feedback is dominated by the resistance. This
means that the pole of the feedback network must be at least a decade after the operating
frequency, which, in our case, is the resonator resonance:

ωF =
1

RFCF
≫ ωo,

and the transfer function of the ampli�er at resonance can be approximated as

TTRA (jω)|ω≈ωo
=

Vout (jω)

Iin (jω)

∣∣∣∣
ω≈ωo

≃ RF

With this architecture, the working frequency falls within the plateau of the Bode mod-
ulus diagram, shown in Fig. 3 together with the phase shift, for di�erent RF values.
On the other hand, with a CA architecture, the feedback impedance at resonance is
dominated by the capacitance. This means that the circuit pole is at least a decade
before the working frequency,

ωF =
1

RFCF
≪ ωo,
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Figure 3: Bode plot of the front-end electronics as the feedback resistance changes. The
feedback capacitance is kept constant at 200 fF.

and the transfer function, around ωo, is

TCA (jω)|ω≈ωo
=

Vout (jω)

Iin (jω)

∣∣∣∣
ω≈ωo

≃ 1

jωCF
.

Why should we choose the CA? To provide an answer, let us discuss the e�ect of the
feedback resistance noise on the circuit. The expression of the signal-to-noise-density
ratio of this circuit can be evaluated as:

SNRd =
vout√

Sn,V,out (ωo)
=

ima |ZF (ωo)|√
4kBT

RF
|ZF (ωo)|2

=
ima

√
RF√

4kBT
.

The SNR is proportional to the square root of the feedback resistance, and it is inde-
pendent of the feedback capacitance. The higher the resistance RF , the better. As you
can see in Fig. 3, the highest values of resistance are found when the circuit operates
as a CA. The message is that with a CA front-end one can make the feedback resistor

noise negligible with respect to other noise sources, e.g., thermomechanical noise of the

resonator and ampli�er noises.
In addition, when you choose a TRA, you cannot independently choose the SNR and the
gain, as they both depend on RF ; on the other hand, with a CA, you can independently
set the SNR and the gain, as the latter depends only on CF .
For these reasons, the CA topology is often preferable. The capacitance shall be set as
low as possible, so to maximize the signal amplitude at the output node. In this exercise,
the capacitance value CF is limited by technological constraints to 200 fF.
In order to make the circuit operate as a charge ampli�er, the feedback pole has to be
at least a decade below the operating frequency. A charge ampli�er with such a pole
position, however, introduces a residual phase shift:

̸ GCA = ̸ T (j2πfo) = 180◦ − tan−1

(
fo
fpole

)
= 95.7◦.
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With a one-decade split between pole frequency and operating frequency, the deviation
from the theoretical value of 90◦ is not negligible (almost 6◦). A two-decade gap (cor-
responding to RF = 2.43 GΩ) leads to a more acceptable 90.6◦ phase shift. We then
choose a 2.43-GΩ RF , that guarantees both a higher SNR and a more accurate phase
shift between input current and output voltage.

Once the charge ampli�er is chosen, we can calculate its gain, in order to check if it is
enough to compensate the resonator losses. The CA gain at f0 is

GCA = |TCA (j2πfo)| =
1

2πfoCF
= 24.3MΩ.

This gain is lower than the value of the maximum motional resistance. This means that
the CA on its own is not able to compensate for mechanical losses. In other words, if we
decided to close the loop by connecting the output of the CA directly with the actuation
electrode we would have a loop gain of:

Gloop =
GCA

Rm,max
= 0.71,

which is lower than 1. The circuit would not have enough gain to enable and sustain
the oscillation: we need to add at least another stage after the CA. In our example,
we will choose a non-inverting hard-limiter (or comparator), with its threshold set to
ground. In this way the sinusoidal signal at the output of the charge ampli�er saturates
to positive and negative voltage supplies as it crosses the ground potential, generating at
the comparator output a square wave with an amplitude that goes from +VDD to −VDD.
With the insertion of the hard-limiter, assuming its small-signal gain to be 1000 (GHL),
the loop gain turns out to be much higher than 1 at the start-up:

Geln = GCA ·GHL > Rm,max.

The oscillator designed up to now is shown in Fig. 4.

Figure 4: The circuit we designed up to now: equivalent RLC circuit of the resonator,
the CA and the hard-limiter.
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Question 3

Unfortunately, the signal at the output of the hard-limiter cannot be used to directly
drive the resonator, because a voltage wave with such an amplitude would violate the
small-signal hypothesis of the linear model:

va
4

≪ VDC .

A high ac amplitude would also cause a proof mass motion which may be too large;
indeed, we were asked not to exceed a maximum displacement of 2 µm.
It is thus necessary to reduce the waveform amplitude at the hard-limiter output. The
square-wave shape of the wave can be maintained, as the MEMS itself will �lter all high-
order odd harmonics of the signal. It is thus possible to implement a de-gain stage in
its simplest form: a voltage divider. We now evaluate the voltage amplitude value that,
worst-case, causes the proof mass to move by xa,max. The transfer function between force
and displacement for the MEMS resonator at resonance is

X (jω0)

F (jω0)
=

Q

k
→ xa =

Q

k
Fa =

Q

k
ηva

Remember that, in the last equation, va is the amplitude of the sinusoidal voltage that is
applied to the actuation electrode. If the actuation voltage is a square wave, we should
consider only the amplitude of the �rst harmonic, as other harmonics will be �ltered
out by the MEMS transfer function (see Fig. 5). Remember that a square wave, xsq (t),
which switches from +V to −V , can be written as

xsq =
4

π
V

[
sin (2πfot) +

1

3
sin (6πfot) +

1

5
sin (10πfot) +

1

7
sin (14πfot) + · · ·

]
.

Given a �xed actuation voltage amplitude, the displacement amplitude, xa, is maximum
when the Q-factor is maximum. Recalling the relationship between Q and T , the max-
imum value of Q is evaluated for the minimum value in the temperature range, Tmin =
273 K − 45 K = 228 K:

Q(Tmin) = Qmax = Q(Troom) ·
√

Troom

Tmin
= 2294

By dimensioning the actuation voltage for this worst-case situation, we are guaranteeing
that, if the temperature increases, Q-factor is reduced, and the displacement is reduced,
i.e., we will never exceed the maximum allowable displacement of 2 µm.
The sti�ness of the device, k, can be easily calculated as

k = (2πf0)
2m = 33.9N/m,

independent of Q variations. Once both the maximum quality factor and the spring
sti�ness are known, we can size the ac voltage that should be delivered to the resonator:

va =
xa,maxk

Qmaxη
= 573mV,
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Figure 5: Square-wave driving
e�ect.

which corresponds to a square-wave whose amplitude is

va,sq =
va
4

π

= 449mV.

With these numbers, the small-signal condition is now satis�ed: va
4 ≪ VDC . Once the

signal amplitude has been calculated, we have to size the voltage divider in order to
obtain the desired signal amplitude. The gain of the stage has to be:

GDG =
va,sq
VDD

= 0.14

By arbitrarily choosing one of the two resistors, RDG,1, to be equal to 10 kΩ, the value
of the other resistor, RDG,2, turns out to be

RDG,2 = RDG,1
1−GDG

GDG
= 63.4 kΩ.

Figure 6: The circuit we designed up to now: equivalent RLC circuit of the resonator,
the CA, the hard-limiter, the de-gain stage and the bu�er.

After this de-gain stage it may be appropriate to put a bu�er stage, in order to drive the
MEMS with a low impedance driver. The circuit designed so far is shown in Fig. 6.
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Question 4

The Barkhausen criterion on magnitude is satis�ed thanks to the non-linear hard-limiter
behavior, which makes it much greater than 1 at the start-up. But what about the phase
shift? Let us cut the loop at the actuation node. As shown in Fig. 7, at resonance the
MEMS is a pure resistor, that does not change the phase of the input signal. The charge
ampli�er stage, being inverting and being an integrator, introduces a phase shift of 90◦:
the comparator is a non-inverting stage and it does not introduce a phase lag, and so
does the de-gain one. In conclusion, a voltage signal at resonance comes to the end of
the loop with a phase shift of 90◦. The Barkhausen criterion on the phase of the loop
gain is thus not satis�ed! In this condition, the circuit cannot oscillate!

Figure 7: Phase shift analysis on the oscillator.

We therefore need another stage that introduces an additional −90◦ phase shift in the
loop. A stage that can provide such an output is an inverting di�erentiator, as shown in
Fig. 8.
Where to place it? A good solution is to place it right after the front-end, where the
oscillation is still a sinewave. If we decided to place it after the comparator or de-gain
stage, we would di�erentiate a square-wave, i.e., we would obtain impulsive spikes (not
really a desired condition).
The transfer function of a di�erentiator like the one shown in Fig. 8 is

TDIF (s) =
Vout,DIF (s)

Vin,DIF (s)
= − sC1R2

(1 + sC1R1) (1 + sC2R2)
.

If properly dimensioned, the stage introduces one zero in the origin, that is exactly what
we want, and two poles at higher frequencies. In this case the derivative of the sinusoidal
input wave is again a sinusoidal wave, but with a phase shift of −90◦: −180◦ due to the
inverting nature of the stage, and 90◦ due to the zero in the origin, as shown in Fig. 9.
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Figure 8: Topology of the di�erentiating stage.

Figure 9: Bode diagrams of magnitude and phase of the di�erentiator.

We have now to dimension the components in a way that the two poles introduced by
the stage are at least two decades after the resonance frequency of the device, such that
the introduced phase shift is (almost) exactly −90◦. In addition, it is convenient to �x
the gain of the stage at resonance, GDIF = |TDIF (jωo)|, to be equal to 1. Essentially
we have three equations (the gain and the two poles) and four unknowns. So, one of
them has to be reasonably selected with no speci�c constraints. Arbitrarily choosing a
feedback resistance, R2, of 100 kΩ, the input capacitance, C1, turns out to be

GDIF = 2πf0C1R2 = 1 → C1 =
1

2πf0R2
= 48 pF.

From the requirements on the pole frequencies, we can dimension the remaining compo-
nents. Note that the two pole frequencies are not required to be the same, but there is
no reason to put them at di�erent ones. By choosing fp,DIF = 3.2 MHz as the poles
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Figure 10: Loop gain magnitude and phase.

frequency, sizing of the remaining components is easy:

C2 =
1

2πfp,DIFR2
≃ 0.5 pF, R1 =

1

2πfp,DIFC1
≃ 1 kΩ.

With the so sized di�erentiating stage, the design of the oscillator is now complete: both
Barkhausen criteria are now satis�ed. Figure 10 reports magnitude and phase of the loop
gain. Figure 11 shows the schematic of our complete circuit.
Note that the magnitude of the loop gain at resonance can be predicted as

Gloop = |Tloop (j2πfo)| =
1

Rm
GCAGDIFFGHLGDG ≃ 100,

that corresponds to the peak value of Fig. 10.

Figure 11: Complete schematic of the oscillator.
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