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Problem

You work in a company developing innovative smart-watches, and you are asked to
design a MEMS resonator, based on the so-called Tang structure. The target resonance
frequency, f0, is 32.768 kHz. The equivalent resistance of the electrical model of the
resonator, noted as Rm, should be lower than 10 MΩ. The electromechanical structure,
see Fig. 1, has a moving mass with an equivalent area of 150 µm x 85 µm and a spring
length of 91 µm. Additionally, the device has 8 di�erential parallel-plate cells used solely
for electrostatic tuning. The fabrication technology has some rules and characteristic
dimensions, listed in Table 11. You are asked to:

1. Neglecting any softening, calculate the worst-case variability of the resonance fre-
quency of the device, given the process tolerances (3σx and 3σh).

2. Knowing (i) that the �nal resonance frequency of the device has anyway to match
the target frequency, f0, and (ii) that it is possible to exploit electrostatic tuning

1Due to process spreads, dimensions of real devices may di�er from the design: etch spreads indicate
that the structural layer can be wider or narrower than by design; thickness spreads refer to an
epitaxial height thicker or thinner than the nominal target. This variability is described by a Gaussian
function: the most probable case is for no process spread; numbers reported in Table 1 refer to the
3σ value of the distribution.
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Symbol Value

Young's Modulus E 160 GPa

Density ρ 2320 kg/m3

Process thickness h 15 µm

Nominal spring width wsp 1.5 µm

Nominal process gap gmin 1 µm

Etch spread ±3σx ±0.05 µm

Thickness spread ±3σh ±1 µm

N. of comb �ngers per side NCF 38

Quality factor at room T Q 670

Table 1: Technological constraints and rules.

Figure 1: Structure of the MEMS res-
onator. Blue: moving mass;
yellow: tuning electrodes; grey:
anchored mass; green: drive
and sense electrodes.

to solve over- or under-etch issues, �nd a clever target natural frequency, fr, of the
device and choose the proof mass value.

3. Calculate the maximum voltage that should be applied to the tuning electrodes to
bring all the devices down to the target resonance frequency, f0.

4. For the target parameters, �nd the minimum DC rotor voltage, VDC , in order to
comply with the requirement on Req, and extract the complete electrical equivalent
model of the resonator.

Introduction

The Tang topology is a common structure for MEMS resonators and can be made very
small with respect to typical dimensions of MEMS inertial sensors. It employs a comb-
�nger structure for both actuation and sensing to avoid non-linearity of parallel plates
and reach large vibration amplitudes.
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Figure 2: Generic, non folded, guided-
end spring.

Why a resonance frequency of 32.768 kHz? This frequency value is commonly used
because it is a power of 2 (32768 = 215). One can easily obtain a precise 1-Hz clock using
binary frequency dividers, e.g. �ip-�op chains used as binary counters. For this reason,
this frequency value is the industry standard for real-time-clock applications.

Question 1

Let us analyze the e�ect of the variation of the thickness of the PolySi layer on the
resonance frequency. For a generic non-folded, guided-end spring, as the one shown in
Fig. 2, the spring constant can be estimated as

k = E
w3h

L3
,

where E is Young's modulus, w is the width of the spring, h is its height, and L is the
length. Note that this expression is valid for displacements occurring along the w-axis of
the spring.
The mass of a suspended structure also depends on the thickness of the PolySi layer:
m = Ahρ, where A is the area of the structure, h is its thickness, ρ is its density. The
resonance frequency of such a structure can be easily evaluated as:

fr =
1

2π

√
k

m
=

1

2π

√
Ew3h

AhρL3
=

1

2π

√
Ew3

AρL3
,

which is independent of the thickness of the device. This is a general rule for all the
structures that have an in-plane mode. Note that the dependence is di�erent if the
device is a torsional structure: in this case, the spread on the process height becomes a
critical parameter for the determination of its resonance frequency.
On the contrary, the e�ect of the over- or under-etch, i.e., of the variability of the in-plane
dimensions, is very important for both in-plane and out-of-plane structures. Indeed, the
sti�ness of a spring has a cubic dependence on its width, hence a small change of this
dimension has a huge e�ect on the spring constant, hence on the resonance frequency
(while the mass is usually a�ected in a negligible way). In order to numerically evaluate
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the e�ects of this over-/under-etch, it is common practice to di�erentiate the expression
of the resonance frequency with respect to the spring constant:

fr =
1

2π

√
k

m
→ ∂fr

∂k
=

1

4π
√
km

·
√
k√
k
=

fr
2k

→ ∂fr
fr

=
1

2

∂k

k
.

We can then di�erentiate the expression of the sti�ness with respect to its width

k = E
w3h

L3
→ ∂k

∂w
=

3Ew2h

L3
=

3

w

Ew3h

L3
=

3

w
k → ∂k

k
= 3

∂w

w
.

By combining the last two expressions, the resonance frequency variation due to a width
variation is easily calculated:

∂fr
fr

=
3

2

∂w

w
.

In other terms,

fr︸︷︷︸
actual resonance

= fr0︸︷︷︸
nominal resonance

+ ∂fr︸︷︷︸
frequency variation

= fr0 +
3

2

fr0
w

∂w.

The maximum resonance variation is obtained for the maximum over-etch, ∆wmax, i.e.,
2 times2 the 3σ value of the spread probability density function:

∆fr,max =
3

2

∆wmax

wsp
fr =

3

2

2 · 3σx
wsp

f0 =
3

2

2 · 0.05 µm
1.5 µm

fr = 3276.8Hz.

This is the unilateral maximum variation of the resonance frequency of the device due to
under-/over-etch of the process. This means that such a device can randomly resonate
from f0 −∆fr,max = 29491 Hz to f0 +∆fr,max = 36045 Hz.

Question 2

Tang resonators are used for applications requiring precise oscillation frequencies. It is
therefore mandatory to obtain the target resonance frequency value independently of
process spreads.
As we learned in other classes, one can exploit electrostatic spring softening (frequency
tuning) to change the resonance of an electromechanical structure.
We know that frequency tuning can shift the resonance only towards values lower than
the nominal one. For this reason, a wise design shall target a higher (than 32.768 kHz)
nominal (no over-/under-etch) frequency, fr. In particular, one shall design the structure
such that, for the maximum over-etch, the obtained frequency exactly matches 32.768
kHz (refer to Fig. 3).

2We consider two times the over-/under-etch because a spring has two over-/under-etched edges.
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Figure 3: Schematic representation of the �nal (f0) and design (fr) target frequency for
the device, evidencing the spread due to under-/over-etch.

Starting from the relationship obtained above, for a certain resonance frequency, fr, the
maximum frequency variation has to be ∆fr,max = fr − f0. Hence:

∆fr,max

fr
=

fr − f0
fr

=
3

2

∆wmax

wsp
=

3

2

2 · 3σx
wsp

,

where fr is the equation unknown. Hence, fr =
f0

1− 3

2

2 · 3σx
wsp

= 36.409 kHz.

With a resonance frequency of 36.409 kHz, the maximum unilateral frequency variation
due to under-/over-etch becomes:

∆fr,max =
3

2

2 · 3σx
wsp

· fr = 3641Hz.

In this way, assuming a linear dependence between spring width and resonance frequency,
the minimum obtainable frequency for the resonator structure turns out to be exactly
fr,min = fr −∆fr = f0 = 32.768 kHz, while the maximum one fr,max = fr +∆fmax =
40.050 kHz, as shown in Fig. 4.

We have now to size the mass of our device, so to target fr. With the Tang resonator
structure shown in Fig. 1, the spring on each side can be described by the parallel of two
beams (from the anchor point to the rigid link), themselves in series with two further
beams in parallel (from the rigid link to the suspended frame). Taking into account that
we have two of such springs, the overall mechanical sti�ness becomes

k = ksb
1

2
2 · 2 = 2ksb,
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Figure 4: Real (blue curve) behavior of the resonance frequency for di�erent over-/under-
etch values and its linear �tting (red-dashed curve).

where ksb is the spring constant of a single beam; the factor 1/2 accounts for the series
connection, one factor 2 indicates the parallel between the beam pairs, and another factor
2 indicates the two springs in parallel. With the chosen values of width, wsp = wsp, and
length, Lsp, the sti�ness can be evaluated as:

k = 2ksb = 2
Ew3

sph

L3
sp

= 21.5N/m.

Once this nominal sti�ness is targeted, the actual sti�ness may vary between 26 N/m (for
a spring width of 1.6 µm) and 17.4 N/m (for a spring width of 1.4 µm). Note that this
latter case corresponds to the nominal resonance frequency (indeed, for the maximum
etching the resonance value is the lowest, and matches 32768 Hz, as expected, without
requiring electrostatic tuning).
Given the target resonance frequency, fr, we calculate the required mass:

fr =
1

2π

√
k

m
→ m =

1

4π2

k

f2
r

= 0.41 nKg.

We should now make a comparison between the required mass, m, and the maximum
mass we can e�ectively have from the geometry. With the provided data, the total area
forming the mass of the device, Aeq = 150 µm x 85 µm, corresponds to a mass of

mfull = Aeqhρ = 0.44 nKg.
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This is larger than the value found above, indicating that we can use holes in the structure
to reduce the e�ective mass value.

Question 3

Given the resonance frequency, fr, and its variability due to process spreads, the maxi-
mum resonant frequency, fr,max, can be found, and it is possible to calculate the maxi-
mum voltage that has to be applied to the tuning stators in order to tune the resonance
frequency down to f0.
As shown in Fig. 1, there are 8 di�erential parallel plates tuning cells, 4 in the upper
part of the structure and 4 in the lower part. The di�erential cells are all composed by
two stators and the rotor.
In order to calculate the voltage to be applied to the tuning stators, we have to calculate
the contribution to the sti�ness given by the tuning process, i.e., the electrostatic sti�ness.
Starting from the maximum frequency, we can calculate the maximum mechanical sti�-
ness of our device:

fr,max =
1

2π

√
kmax

m
→ kmax = f2

r,max · 4π2 ·m = 26N/m.

In order to tune the resonance frequency down to f0 = 32.768 kHz even in this worst
case, the needed electrostatic sti�ness, kel, can be evaluated from the following equation:

f0 =
1

2π

√
kmax + kel,max

m
→ kel,max = 4π2 · f2

0 ·mtarget − kmax = −8.6N/m.

The expression of the electrostatic sti�ness for di�erential tuning electrodes is:

kel = 2V 2
tun

C0Ntun

g2tun
= 2V 2

tun

ϵ0hLtunNtun

g3tun
,

where Vtun is the voltage di�erence between the rotor and the tuning electrodes, C0 is
the rest capacitance of a single tuning electrode, gtun is the tuning-electrode gap, Ltun

is the length of each tuning electrode, and Ntun is the number of tuning electrodes. As
the length of the electrodes, Ltun, is not yet decided, we choose to make it as long as
possible, so that to minimize the tuning voltage. Leaving some distance between the
stators and the moving parts, e.g. 2.5 µm for both the upper and the lower part of the
electrodes, its maximum length can be easily evaluated as

Ltun = Lsp − 2 · 2.5 µm = 86 µm.

The gap between tuning electrodes and springs becomes in this case gtun = 0.9 µm due
to minimum etching on both sides. The number of di�erential cells is given (Ntun = 8).
The maximum voltage to be applied to the tuning electrode can thus be found:

kel,max = −2V 2
tun,max

ϵ0hLtunNtun

g3tun
→ Vtun,max =

√
−kel · g3tun

2ϵ0hLtunNtun
= 5.86V.

Note that, since |kel,max| < |kmax|, the obtained tuning voltage is obviously lower than
pull-in.
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Question 4

Let us infer the electrical model of a resonator in the Laplace domain. The output (or
motional or sense) current, I, of a resonator can be evaluated as:

I (s) = ηsẊ (s) ,

where ηs = VDC
∂Cs
∂x is the sense-electrode electromechanical transduction coe�cient, and

Ẋ is the velocity of the proof mass. The velocity is the derivative of the displacement,
Ẋ (s) = sX (s). Hence,

I (s) = ηssX (s) .

The displacement, X is related to the actuation force through the well-known second-
order mechanical transfer function of a MEMS resonator:

X (s) =
1

k + bs+ms2
F (s) .

Assuming a small-signal actuation voltage, one can linearize the actuation voltage-vs-
force relationship as

F = ηaV,

where ηa = VDC
∂Ca
∂x is the actuation-electrode (sometimes referred to as drive) electro-

mechanical transduction coe�cient. One thus obtains

I (s) = ηs
s

k + bs+ms2
ηaV (s) .

We can now de�ne the transfer function between actuation (driving) voltage and motional
(sense) current as

Y (s) =
I (s)

V (s)
= ηs

s

k + bs+ms2
ηa,

which has the dimensions of a physical admittance. Its inverse, Z = 1/Y has the ex-
pression of an impedance, and can be referred to as the motional impedance of a MEMS
resonator, where motional refers to the fact that models the moving, dynamic section
of the resonator. With identical drive- and sense- electromechanical transduction coe�-
cients, ηa = ηs = η, the motional impedance can be expressed as:

Z (s) =
k + bs+ms2

s

1

η2
=

k

sη2
+

b

η2
+

m

η2
s =

1

sCm
+Rm + Lms,

where

Rm =
b

η2
, Lm =

m

η2
, Cm =

η2

k

are the motional resistance, inductance, and capacitance of the series electrical model of
a MEMS resonator, as shown in Fig. 5.
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Figure 5: Series-RLC electrical model of a MEMS resonator.

Figure 6: Single comb-�nger structure.

As inferred from the electrical model of the resonator, the DC voltage applied to the
moving mass, VDC , is directly related to its motional resistance, Rm,

Rm =
b

ηaηs
=

1

ηaηs

2πfrm

Q
.

Note that, the higher is the quality factor, i.e., the lower is the damping coe�cient, the
lower is the equivalent resistance.
In order to evaluate the needed DC bias voltage, we �rst need to evaluate the elec-
tromechanical transduction coe�cient of our resonator. The rotor-stator capacitance of
a generic comb electrode can be expressed as

C = 2 ·NCF
ϵ0h (x+ Lov)

g
,

where Lov is the rotor-stator overlap length at rest (i.e., with x = 0), x is the rotor
displacement, g is the gap between rotor and stators; the factor 2 takes into account
both faces of the NCF comb structures (see Fig. 6).
The capacitance variation per unit displacement of the comb-structure is thus:

∂C

∂x
=

2ϵ0hNCF

g
,

which is independent of the displacement. As mentioned, this is a huge bene�t of comb-
�nger electrodes, when compared to parallel-plate ones.
For a symmetric resonator, as the one considered in this example, where the number
of drive- and sense-comb structures are the same, ηa and ηs coe�cients are equal, as
∂Ca/∂x = ∂Cs/∂x. The equivalent resistance can be thus expressed as

Rm =
1(

VDC
∂C

∂x

)2

2πfrm

Q
.
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The equivalent resistance depends on the inverse of the square of VDC : the higher is the
DC voltage, the lower is Req. We have all the parameters needed to calculate its value:

Rm =
b

η2
=

1(
VDC

∂C

∂x

)2

2πfrm

Q
=

2πfrm

Q

(
VDC

2ϵ0hNCF

g

)2 < 10MΩ → VDC > 11.2V.

Be careful! The voltage applied to the tuning electrodes has now to be increased! Re-
member that the spring softening e�ect depends on the voltage di�erence between the
rotor and the tuning electrodes: the value for the tuning voltage we found above is not
the absolute tuning voltage, but it is the voltage di�erence that has to be applied between
rotor and tuning electrodes.
Once this value is calculated, it is easy to evaluate η and so the values of the components
of the equivalent electrical model of the resonator, whose admittance is depicted in Fig.
7 for di�erent VDC values. Using the value found above, VDC = 11.2 V, and the total
sti�ness relative to the �nal frequency f0, i.e., ktot = 4π2f2

0m = 17.4 N/m, one gets

Rm =
b

η2
= 10MΩ, Lm =

m

η2
= 32 kH, Cm =

η2

k
= 0.72 fF

These values are typical for comb-based, small-size MEMS resonators.

Figure 7: Magnitude of the resonator admit-
tance for di�erent VDC values.
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