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Problem description and questions

You are asked to design a consumer-grade accelerometer for out-of-plane accelerations inside a
6-axis IMU. In order to use the same electronic circuit discussed for the in-plane devices, the
OP accelerometer needs to target the same performance: dCdiff/daext = 4.1 fF/ĝ, f0 = 4456Hz
(in operation), FSR = 16 ĝ, VDD = 3V. Other parameters are reported in Table 1. Also refer
to Figure 1 for a better understanding of the geometry.

Symbol Value

Shear modulus G 65GPa
process tickness h 24 µm

holes transduction coe�cient α 0.87
start point of PP (from the rotational axis) x0 10 µm
end point of PP (from the rotational axis) xf 150 µm

mass 1 width r1 150 µm
mass 2 width r2 300 µm
gap of PP g 1.3µm

maximum device length L 950 µm
hole pitch / total pitch hp / tp 3µm / 10 µm

Table 1: Problem parameters.

1. Find the maximum tilt angle for the accelerometer in operation and the linearity error.

2. Given the target mechanical sensitivity and using the the hole transduction coe�cient in
the Table, calculate the required length of the parallel plates1.

1the hole transduction coe�cient indicates how much a holed vertical parallel plate transduces a capacitance

variation with respect to an ideal full plate, see the upcoming laboratory
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3. Evaluate the parallel-plate contribution in terms of electrostatic sti�ness, and choose the
springs geometry (hint: start from the silicon density, ρ = 2320 kg/m3, to �nd an e�ective
mass density through the holes pitch).

4. Which are the parameters a�ected by a thickness variation of the process for both the
accelerometers (IP and OP)?

Figure 1: sketch of (i) the top view layout of a 3-axis accelerometer and of (ii) the lateral cross-
section of the z-axis device.

Introduction

Why is it almost mandatory to use torsional accelerometers to reveal out-of-plane accelerations?
1) the OP translational sti�ness becomes orders of magnitude larger with respect to the IP
translational sti�ness because of the cubic dependence on process height, a parameter you
cannot act on by design.
2) it is not possible to get a di�erential sensing with translational motion and electrodes only
underneath the proof mass.
The torsional accelerometer avoids these issues: while one half approaches the electrode, the
other one moves away, see Figure 2.

Figure 2: sketch of a vertical displacement and of a torsional displacement.

Thus, we are moving from the linear system described by mass-force-sti�ness-displacement to a
torsional system described by inertia-moment-torsional sti�ness-angle.
Let us introduce some parameters (you can refer to class n.6 for further details):

� Shear modulus: it is de�ned as the ratio of shear stress to the shear strain. The shear
modulus in polysilicon is about G = 65GPa.

� Torque: is de�ned as the cross product of the lever-arm distance vector and the force
vector. Then, the dimension of torque is N ·m.

� Torsional sti�ness: it is involved in the relationship between angle of twist and the applied
torque. For our purpose, the simpli�ed formula of a single torsional bar is enough

k = G
hw3

3l

[
Pa�

�m ·m3

��m

]
→
[
N

��m
2
m�3
]
→ [N ·m]
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Figure 3: sketch of a torsional spring subject to a torque.

� Moment of inertia: is the second moment of mass with respect to distance from an axis.
Then, the dimension of the inertia is kg ·m2.

I =

∫
m

r2dm.

For a better understanding, we calculate the inertia for the given OP accelerometer. For the sake
of simplicity, we can divide this calculation in two parts: one for the left half of the accelerometer
and the second one for the right half (see Figure 1).

I = I1 + I2 =

∫
m1

r2dm+

∫
m2

r2dm

The mass is not considered as point-like: for more accurate results, we can consider it uniformly
distributed along the device.

Figure 4: sketch of a torsional accelerometer, helpful for moment of inertia calculation.

Observing �gure 4, it is clear that in this situation is possible to express the in�nitesimal mass
element as follows:

dm = shρ · dr

Elaborating the de�nition of moment of inertia:

I =

∫ r1

0

r2shρ · dr +
∫ r2

0

r2shρ · dr =
r31
3
shρ+

r32
3
shρ =

r21m1 + r22m2

3
.

In the speci�c situation of our accelerometer,r2 = 2 · r1 and consequently m2 is twice m1. It
follows that:

I = 3r21m1.
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To calculate the value of an external torque momentum, Mext, it is convenient to solve the
motion equation in the non-inertial reference, which for a torsional system is:

Iθ̈ + bθ̇ + kθ = Mext

Note that in a torsional system the unit of measurement of the damping is [kg/s ·m2].
Being Θ(s) the Laplace transformation of the relative angle and Mext(s) the Laplace transfor-
mation of the external torque momentum, one can �nd the transfer function TΘM (s) as

TΘM (s) =
Θ(s)

Mext(s)
=

1/I(
s2 + b

I s+
k
I

)
Writing this equation in terms of 'jω' and considering that ω0 =

√
k/I and Q = ω0I/b, we

obtain

TΘM (jω) =
Θ(jω)

Mext(jω)
=

1/I(
ω2
0 − ω2 + j ω0ω

Q

)
Evaluating the transfer function modulus in quasi-stationary conditions typical of accelerom-
eters, one can �nd the relation between angle and torque momentum below the resonance
frequency ω0

|TΘM (jω)|ω≪ω0
=

1/I

ω2
0

=
1

k

this means that when a quasi-stationary torque is applied to the seismic mass the angle is
governed just by the torsional sti�ness.

Question 1

To evaluate the maximum angle undergone by the accelerometer, θFSR, one can write the
angle in terms of applied torque moment on the seismic mass through the transfer function |T |,
remembering that the accelerometer works at ω < ω0:

θ = M · |T (ω < ω0)| → θFSR =
MFSR

k
→ θFSR =

I

k

MFSR

I
→ θFSR =

1

ω2
0

MFSR

I

where the inertia of the system is I = 3r21m1, as reported above, and the torque moment at
the full scale range can be calculated, assuming the application point of the inertial force in
the mid-point of each half-structure (i.e. the forces are applied in r1/2 and r2/2 for the two
half-masses):

MFSR = M1+M2 = l⃗1×F⃗1+l⃗2×F⃗2 = −r1
2
m1·FSR·ĝ+r2

2
m2·FSR·ĝ =

−r1m1 + 4r1m1

2
·FSR·ĝ →

MFSR =
3

2
r1m1 · FSRĝ ⇒ θFSR =

1

ω2
0

FSR · ĝ
2r1

where FSR · ĝ indicates the full scale range acceleration: the value expressed in gravity units is
multiplied by the gravity constant 9.8m/s2. Given the parameters and the �xed lateral geometry,
the accelerometer undergoes a maximum angle θFSR = 6.66 · 10−4rad. Note that the angle is
determined by the external acceleration, by the resonance frequency and by the geometry.
To evaluate the linearity error, ϵlin, introduced by the parallel plates con�guration, we need
to write the real capacitance variation and the linearized capacitance variation at the full scale
range, indeed:
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ϵlin,FSR =
∆Creal,FSR −∆Clin,FSR

∆Creal,FSR
· 100

where ∆Creal,FSR can be computed as

∆Creal,FSR = C2 − C1 = ϵ0

∫ xf

x0

lPP

g − tan(θ)x
dx− ϵ0

∫ xf

x0

lPP

g + tan(θ)x
dx

For the sake of simplicity, we can approximate the capacitance variation obtained with this
integral through an equivalent parallel plate that translates vertically by a displacement z equal
to the mean value across the electrode width. Naming xm the medium point of the parallel
plate electrode:

xm =
xf + x0

2
; z = tan(θ)xm ∼ θxm .

Figure 5: displacement approximation for torque capacitance variation

At this point, the expression of the real and linearized capacitance variations are identical to
the IP case:

∆Creal = ϵ0
APP

g − z
− ϵ0

APP

g + z
= ϵ0

lPP · (xf − x0)

g

(
1

1− z
g

− 1

1 + z
g

)
= C0

2 z
g

1−
(

z
g

)2
∆Clin = 2C0

z

g
.

In turn, the maximum linearity error can be as well calculated as for in-plane devices:(
zFSR

g

)2

=
ϵlin
100

→ ϵlin = (
xm · θFSR

g
)2 · 100.

With the given geometry and parameters, the linearity error results ϵlin = 0.17%.

Question 2

The mechanical sensitivity is de�ned as the capacitance variation per gravity unit of acceleration.
Then we can �nd the needed dimensions of parallel plates to satisfy the target (we are considering
the 'vertical displacement approximation')

dCdiff

daext
=

∆CFSR

aFSR
→ dCdiff

daext
· aFSR = ∆CFSR = 64.36fF →

∆CFSR = α · 2ϵ0 · lPP · (xf − x0)

g2
· zFSR

Where zFSR = ΘFSR · xm. In order to reach the target sensitivity, the parallel plates length
becomes lPP = 944µm.
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We can also write, for the sake of completeness, the mechanical sensitivity formula by combining
the equations found so far:

Smech =
∆C

∆aext
=

∆CFSR

zFSR
· zFSR

θFSR
· θFSR

aFSR
=

= 2α
C0

g
· xm · 1

ω2
0 · 2 · r1

= 2α
C0

g
· 1

ω2
0

· xm

2 · r1
The di�erence with respect to the in-plane accelerometer accounts for the capacitive fringe e�ects
(α), the geometrical distribution of the mass (r1) and the positioning of the parallel plates (xm).

Question 3

The considered sensor presents a capacitive readout based on parallel plates con�guration. To
evaluate the e�ect of electrostatic softening introduced by the electrostatic torque momentum
of the parallel plates, one can write according to the small displacement approximation:

Melec = xm · |Felec,2| − xm · |Felec,1| ≃ xm · 2αC0

g2
V 2
DD · z = 2α

C0

g2
V 2
DD · x2

m · θ

For a stationary torque applied to the sensor, the general equation of motion and thus the
de�nition of electrostatic torsional sti�ness become:

I��̈θ + b��̇θ + kθ = Mext +Melec → kθ −Melec = Mext → θ (kmec + kelec) = Mext

kelec = −2α
C0

g2
V 2
DD · x2

m.

which is the same expression as for the in-plane electrostatic sti�ness, now multiplied by the
squared distance between the electrode mid-point and the rotational axis.
In our case kelec = −5.3 · 10−8N ·m. The total sti�ness can be calculated from the resonance
frequency in operation and the moment of inertia:

f0 =
1

2π

√
ktot/I =

1

2π

√
ktot/(2 ∗ r21 ∗m1)

The value of the mass m1 corresponds to a silicon parallelepiped, which however has an e�ective
density lower than a full one, because of the holes:

m1 = 150µm · 950µm · 24µm · ρ · Afull

Apitch
=

= 7.9nkg · Afull

Apitch
= 7.9nkg · (10µm)2 − (3µm)2

(10µm)2
= 7.9nkg · 0.91 = 7.2nkg

where the ratio takes the name of e�ective polysilicon density (0.91 in this case). The total
sti�ness turns out to be ktot = 3.8 · 10−7N ·m.
Considering that k+kelec = ktot, it turns out that our mechanical sti�ness is k = 4.33·10−7N ·m,
about an order of magnitude larger than the electrostatic sti�ness.

To size the springs, �rst of all let us keep in mind the geometry presented in �gure 4. In order
to obtain a correct torsion of the accelerometer, it is necessary to use two springs in a parallel
con�guration resulting in a mechanical torsional sti�ness:

k = 2G
w3

sh

3ls

How to select the spring length? We prefer the torsional element to be as long as possible,
because this allows a wider spring for the same sti�ness (so, less 'over-etch' problems). The
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available dimension is s = 950µm. We have to �t within this space two springs and their anchor
point. Let us assume a single anchor area, 50µm long: the corresponding length for the spring
becomes ls = 450µm. Now we can �nd the spring width as

ws =
3

√
3lk

2Gh
= 5.72µm

Question 4

A typical challenge associated to the design of MEMS is related to the variation of fabrication
process parameters. The technological �ow is formed by di�erent cascaded steps, and each of
them can introduce imperfections in the geometry/packaging de�nition. Some of such typical
issues are (i) variation of the thickness (due to nonuniformities in the epitaxial growth), (ii)
variation of the springs/gaps width (due to the DRIE etching nonuniformities) and (iii) variation
of the pressure inside the module. It is important, during the design phase, to take into account
these spreads and to �nd a way to mitigate their e�ects.
Speci�cally discussing the request of this exercise, which are the parameters a�ected by a thick-
ness spread, and how do they change as a function of its value? Let us review this for both
types of accelerometers.

IP

SIP = 2
C0

gIP
· VDD

CF
· 1

ω2
0

= 2
C0

gIP
· VDD

CF
· m

k + kelec

� Of course, the seismic mass is proportional to thickness, m ∝ h.

� The electrostatic sti�ness results itself proportional to thickness, C0 ∝ h.

� The IP sti�ness is proportional to the thickness, k ∝ h, then also the total sti�ness
(electrostatic+mechanical).

� The IP resonance frequency is thus independent of the thickness: this result arises from
the proportionality of the resonance frequency to the total sti�ness and its inverse pro-
portionality to the mass. This result is very important because it means that also the
performed displacement per applied acceleration is itself independent of h.

� The IP di�erential capacitance variation per unit acceleration (i.e. the mechanical sen-
sitivity) is �nally proportional to the thickness. It means that for the same planar

geometry, a larger scale-factor is obtained in thicker devices. If repeatable devices
in terms of sensitivity are required, we should ensure a uniform wafer thickness!

OP

SOP = 2α
C0

gOP
· VDD

CF
· 1

ω2
0

· xm

2 · r1
= 2α

C0

gOP
· VDD

CF
· I

k + kelec
· xm

2 · r1
� The seismic mass is linear with thickness and so the other parameter related to the seismic
mass, i.e. the moment of inertia, I ∝ h.

� The torsional sti�ness is proportional to thickness, k ∝ h.

� The electrostatic sti�ness, in OOP accelerometer, is independent of process height, because
now C0 (vertical gap) is independent of h.

� The resonance frequency thus slightly varies with process height, because the electrostatic
sti�ness remains constant. Given that the electrostatic contribution is usually much lower
than the mechanical one, we can say that the resonance frequency is anyway almost con-
stant against thickness spreads.

� As a consequence, for OOP accelerometers, the sensitivity remains roughly uni-

form if process height �uctuations occur.
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