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PROBLEM DESCRIPTION AND QUESTIONS

You are a young MEMS designer and your supervisor asks you to redesign a consumer-grade accelerometer
for a next-generation mobile phone, and to give some forecasts on the electro-mechanical performance of the
sensor. The bounded geometrical parameters are reported in Table 1. Additionally, the accelerometer must
ensure a full scale range F'SR = +16 g, and the parallel plates can be polarized at Vpp = £3V.

1. Given that the maximum acceptable linearity error, €,, is equal to 1%, calculate the maximum
capacitance variation.

2. Calculate the electromechanical sensitivity [fF/g] and the resonance frequency during the operation of
the accelerometer.

3. Evaluate the contribution of the parallel plates in terms of electrostatic stiffness and calculate the
mechanical stiffness (bonus question: choose the geometry of the springs).

4. Calculate the needed quality factor, @, to guarantee a NEAD = 25 p}i'

ﬁ

\ Symbol \ Value

Young’s modulus E 150 GPa
process tickness h 24 nm
seismic mass m 4.5 nkg
maximum spring length lmaz 200 pm
minimum spring width Winin 1.7pm
# diff PP cells Npp 10
length of PP lpp 300 pm
gap of PP gpp 2 pm

Table 1: fixed parameters.



INTRODUCTION

A MEMS accelerometer is a microelectromechanical system used to reveal linear accelerations. MEMS devices
are modeled with a spring-mass-damper system, in order to describe their static and dynamic behavior. The
equation of motion of such a system can be written as follows:

mx + bt + kx = Fopy.
Being X (s) the Laplace transform of the relative position and Fg..(s) the Laplace transform of the external
force, the transfer function T'xr(s) can be calculated as
X(s) 1/m

T = = .
xr(s) Fert(s) (32 + %S + %)

Substituting s = jw and defining the resonance frequency wy = \/k/m and quality factor Q = wom/b, the
transfer function is rewritten in the Fourier domain as

Tyr(jew) = X (jw) _ 1/m ‘
Fext(jw) (w% — wz +J%)

The relation between displacement and force can be simplified in a useful way considering three different
frequency ranges:

o if W << wy:

4 1/m 1
TxF ()l ey = W2 Tk

which means that when a quasi-stationary force is applied to the seismic mass, the displacement is
governed only by the stiffness constant and is in phase with the applied force;

e if W= wp:

TxF(§W)] ey =

Im _Q/m _Q
Tk

(g
Q

which means that applying a force at the device resonance frequency, the displacement increases by a
factor @ with respect to the quasi-stationary case. Additionally, if one looks at the phase a 90° phase
lag is found;

o if w>> wy:
1/m

’TXF(jw)‘w>>wo )

w
which means that, beyond the resonance frequency, the displacement is proportional to the inverse of
frequency. Accelerometers typically work in the first frequency range, thus with an input acceleration
bandwidth smaller than wy. The reason is simply that accelerations usually occur at low frequency for
most of the applications, and there is no easy way to modulate the inertial force Fy.. = m - a.

QUESTION 1

The parallel plate configuration is common in accelerometers because of the higher sensitivity with respect
to a comb finger configuration for the same area occupation. However, this configuration suffers from a
geometrical non-linearity: this phenomenon is described by a percentage linearity error €y,. From the
specifications, the acceptable value of this parameter turns out to be 1% and is defined as:

ACreal,psr — AClin PSR
ACvreal,FSR

€lin = 100

where AC)cq, rsr is the real capacitance variation at the full scale range between the capacitance C7 and
Cs (see Lecture n. b):



T 1
ACeqr = C2 — Cy =200~ ——5
g 1— (&)
g
where Cj is the “rest” capacitance, i.e. with no displacement applied to the MEMS accelerometer.

On the other hand, using the small-displacement approximation, z < g, the linearized expression for ACj;,
can be derived as:

ACy, = 20,2
g

Imposing €;, = 1%, one can fix the maximum acceptable full-scale displacement xpgg, i.e. the displacement
corresponding to the maximum acceleration that the accelerometer is designed for:

9z
Co (g)z —2Coy
1—(z
€tin = P 100
CO 2 2
-(3)
(100 l—t 100 s (#rse) e
lin L (= D) g 100
9/ IFSR

€lin
TFSR =4 100°

Hence, the maximum displacement is governed by the linearity of parallel plates: in this case xpgr = 200 nm
and the corresponding value of capacitance variation results AC,¢q rsr = 64.36 {F.

QUESTION 2

You have seen during the classes (Lecture n. 4) that the sensitivity! of a parallel plates MEMS accelerometer,
from input acceleration to differential capacitance variation, can be expressed as:

dC _2dx dC _o 1 Cy

da “da dx wg g
Anyway, in our particular situation, we do not have any information about the accelerometer resonant
frequency. There is an alternative (and much simpler) way to find the sensitivity when we have information
about full scale range and linearity error. Indeed, we already know the capacitance variation for an external

acceleration aprgs = 164, so the sensitivity is given by the following ratio:

E _ ACfreal,FSR
da |pgp FSR
In order to evaluate the working resonance frequency, one can write the displacement in terms of applied

force on the seismic mass through the transfer function |T'|, remembering that the accelerometer works in
the low-frequency range w < wy,

= 4.1fF/g = 0.4fF/(m/s?)

m-a a AFSR

F
X=F - Tw<wy)|—»zr=——>2x=
I o)l k k wo? TFSR
The obtained resonance frequency value is referred to the accelerometer in operation (the term k above is
the overall stiffness; as detailed in the following point of the exercise). The reader is invited to note that the
only data used so far are the linearity error, the gap and the value of the full scale range. The resonance
frequency results fo = 4456 Hz, since fo = wq/2m.

'note that the sensitivity can be given at various levels... from acceleration to either displacement, or capacitance, or output
voltage... be sure to check what the exercise is asking for. The sensitivity from acceleration to output voltage takes also the
name of scale-factor



QUESTION 3

The considered sensor presents a capacitive readout based on a parallel-plate configuration. In order to
evaluate the effect of electrostatic softening introduced by the electrostatic force of the parallel plates, one
can rewrite the characteristic equation of the spring-mass-damper system:

mi + bt + kx = Fopr — ma + bt + kx = maezt + Fojec

Then, one can calculate the expression for the electrostatic force, Fy. in the case of differential parallel
plates configuration.

19C 19C V2. [9C, OC
Felee = Felec,Q + Felec,l - 1 5 < - + 1> =

zaVDD 28VDD 2 or = Oz

2 1 1
_ VDDC g g

> G-s) ()

Because of the small displacement approximation, x < g, the electrostatic force Fije. can be linearized and
results in the following formula:

VLQ)D Co VDD CO 4% CO

? = gVDDx
122 4 % 1422+ % 1—4/%/)/{

In this way, we can notice the linearized behavior of the electrostatic force with respect to the displacement
performed by the seismic mass. Let us consider a stationary acceleration (i.e. at low frequency if compared
to wp) applied to the sensor. In this case the general equation of motion becomes:

Felec =

mf + bf + kx = MAegt + Felec — kx — elec MGegt — T (kmech + kelec) = MAaegt

having defined

C'0
kelec = g VDD

In our case kejee = —1.43N/m.
To obtain the value of the mechanical stiffness kj,ccn, we can use the definition of resonance frequency:

kmech + kelec
m

wo =

With these data, the required mechanical stiffness becomes kyecp, = 4.96 N/m.
Now we can start with the design of the springs. MEMS sensors usually feature more than one spring.
If the springs share the same ‘starting-point’ ( different anchorages to the substrate are ideally the same

point!) and the same ‘end-point’ (different ends connected to the same moving frame are ideally the same
point!) then they are in a parallel configuration, sketched in Figure 1.
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Figure 1: parallel configuration of springs.



In this case, the total force applied to the system, F},:, can be expressed as the sum of the two elastic forces,
Fy and Fb, acting on each spring. Moreover the displacement of each spring is the same, thus the force
balance can be written as:

Fiot = F1 + Fy = k1x + kow = (k1 + ko)x = ko

Hence we can generalize the total stiffness kior por 0f @ system of n parallel springs as:

n
ktot,par = E km =n-kp
m=

where the latter expression holds if the n springs are identical.
Conversely, if the ‘end-point’ of a spring is the ‘starting-point’ of another one they are in a series configuration,
as shown in Figure 2.

Figure 2: series configuration of springs.

In this case the total displacement of the system, ., is obtained by the sum of the displacements of both
springs, 21 and x2. Besides, due to the action-reaction principle, the force F' applied to the system is equal
to that applied to both springs. Thus the total displacement in a series configuration can be written as:

N FOF_ (1, 1\_F
ot = LT = T k' k2) " Ko

from which we derive a generalization of the total stiffness kot ser Of @ series configuration of n springs:

"1
=S

As a tip, one can remember that the overall stiffness of series/parallel of springs is computed like the overall
capacitance of series/parallel of capacitors in an electrical network.

ktot ser

lmax

Figure 3: Four parallel guided-end springs.



To design the spring system of our accelerometer, one can start from the easiest approach:

1. to define a 1-D displacement, 4 guided-end springs are designed in parallel and placed at the four
corners of the frame, ngpring = 4;

2. the simplest spring design has just a single fold per spring, and the stiffness of each spring is

b= 51 (%)

In order to maximize the width of each spring, the maximum available length for the suspended springs is
selected (see Table 1). In this way, we can obtain the maximum value Wz ¢k, given by

3
set Wmazx,GE
kmech = kg = nspringkspring = nspringEh (l—7>
maz

3 kmech

Wmax,GE = lmaz
Nspring o h

obtaining Wy,qz,¢e = 1.4 pm. This dimension is not allowed by the process rules of this technology. In order
to widen the springs, one can use a folded spring topology.

lmax

Figure 4: Four parallel folded springs (two folds per spring).
To “fold a spring’” means to put ny.q beams of the same length in series. Given the required elastic stiffness,
we can write the relation between the width of springs in the ‘folded’ topology and the width of ‘guided-end’

springs as a function of the number of folds, as

set
ktoided = kaE

3 3
- W fold set WGE
L _ 9 pr f set Bh | —=) =k
folded M fold (W) Esp‘rz/g (W) GE

Wold = WGE /M fold

knowing that wy,, = 1.7um, we can obtain the minimum number of folds (an integer number) as:

3
W
Wold = WGE M fold > Winin — M fold = (wzg) =1.79

= Nfold = 2

then the corresponding value of the folded spring is wyoq = 1.75 pm.



QUESTION 4

The motion of an accelerometer, and in general of each MEMS sensor, is affected by a random fluctuation
force, F,,. In most cases this force arises from the interaction of the inertial mass with the residual gas
particles in the MEMS cavity and the fluctuation force spectrum, Sg,,, in units of [N?/Hz] is given by (see
Lecture n. 5):

Spp = 4kpTh

The fluctuation force spectrum is independent of the frequency, thus it is a white noise.

Now, we can obtain the expression for the noise equivalent acceleration density, NEAD, through the trans-
fer function that relates acceleration to force, T4r (squared, because we are dealing with power spectral
densities):

1
2 _
Tarl =02
S
SA,n = nl:,2n

Sk [4kpTb  [4kpTuw

NEAD = \/Sa,, = \/ - =\

m?2 m?2

o 4]{:BTWO
= NEAD?
To match the required input-referred acceleration noise density, it turns out that our quality factor should
be @ = 1.74. This is a pretty nice value for an accelerometer, as this kind of device does not benefit from
large Q values which, on the contrary, would generate undesired ringing under shocks.
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Figure 5: A 3-axis MEMS accelerometer from ST used on Huawei phones. The in-plane axes have parameters
similar to those designed in this exercise.



