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Problem description and questions

You are a young MEMS designer and your supervisor asks you to redesign a consumer-grade accelerometer
for a next-generation mobile phone, and to give some forecasts on the electro-mechanical performance of the
sensor. The bounded geometrical parameters are reported in Table 1. Additionally, the accelerometer must
ensure a full scale range FSR = ±16 ĝ, and the parallel plates can be polarized at VDD = ±3V.

1. Given that the maximum acceptable linearity error, ϵlin, is equal to 1%, calculate the maximum
capacitance variation.

2. Calculate the electromechanical sensitivity [fF/ĝ] and the resonance frequency during the operation of
the accelerometer.

3. Evaluate the contribution of the parallel plates in terms of electrostatic sti�ness and calculate the
mechanical sti�ness (bonus question: choose the geometry of the springs).

4. Calculate the needed quality factor, Q, to guarantee a NEAD = 25 µĝ√
Hz
.

Symbol Value

Young's modulus E 150GPa

process tickness h 24 µm

seismic mass m 4.5 nkg

maximum spring length lmax 200 µm

minimum spring width wmin 1.7 µm

# di� PP cells NPP 10

length of PP lPP 300 µm

gap of PP gPP 2 µm

Table 1: �xed parameters.
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Introduction

AMEMS accelerometer is a microelectromechanical system used to reveal linear accelerations. MEMS devices
are modeled with a spring-mass-damper system, in order to describe their static and dynamic behavior. The
equation of motion of such a system can be written as follows:

mẍ+ bẋ+ kx = Fext.

Being X(s) the Laplace transform of the relative position and Fext(s) the Laplace transform of the external
force, the transfer function TXF (s) can be calculated as

TXF (s) =
X(s)

Fext(s)
=

1/m(
s2 + b

ms+ k
m

) .
Substituting s = jω and de�ning the resonance frequency ω0 =

√
k/m and quality factor Q = ω0m/b, the

transfer function is rewritten in the Fourier domain as

TXF (jω) =
X(jω)

Fext(jω)
=

1/m(
ω2
0 − ω2 + j ω0ω

Q

) .
The relation between displacement and force can be simpli�ed in a useful way considering three di�erent
frequency ranges:

� if ω << ω0:

|TXF (jω)|ω≪ω0
=

1/m

ω2
0

=
1

k

which means that when a quasi-stationary force is applied to the seismic mass, the displacement is
governed only by the sti�ness constant and is in phase with the applied force;

� if ω = ω0:

|TXF (jω)|ω=ω0
=

1/m√(
ω2
0
Q

)2
=

Q/m

ω2
0

=
Q

k

which means that applying a force at the device resonance frequency, the displacement increases by a
factor Q with respect to the quasi-stationary case. Additionally, if one looks at the phase a 90o phase
lag is found;

� if ω >> ω0:

|TXF (jω)|ω≫ω0
=

1/m

ω2

which means that, beyond the resonance frequency, the displacement is proportional to the inverse of
frequency. Accelerometers typically work in the �rst frequency range, thus with an input acceleration
bandwidth smaller than ω0. The reason is simply that accelerations usually occur at low frequency for
most of the applications, and there is no easy way to modulate the inertial force Facc = m · a.

Question 1

The parallel plate con�guration is common in accelerometers because of the higher sensitivity with respect
to a comb �nger con�guration for the same area occupation. However, this con�guration su�ers from a
geometrical non-linearity: this phenomenon is described by a percentage linearity error ϵlin. From the
speci�cations, the acceptable value of this parameter turns out to be 1% and is de�ned as:

ϵlin =
∆Creal,FSR −∆Clin,FSR

∆Creal,FSR
· 100

where ∆Creal,FSR is the real capacitance variation at the full scale range between the capacitance C1 and
C2 (see Lecture n. 5):
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∆Creal = C2 − C1 = 2C0
x

g

1

1−
(
x
g

)2

where C0 is the �rest� capacitance, i.e. with no displacement applied to the MEMS accelerometer.
On the other hand, using the small-displacement approximation, x ≪ g, the linearized expression for ∆Clin

can be derived as:

∆Clin = 2C0
x

g
.

Imposing ϵlin = 1%, one can �x the maximum acceptable full-scale displacement xFSR, i.e. the displacement
corresponding to the maximum acceleration that the accelerometer is designed for:

ϵlin =

C0
2x
g

1−
(

x
g

)2 − 2C0
x
g

C0
2x
g

1−
(

x
g

)2

· 100

(100− ϵlin)

∣∣∣∣∣∣∣
1

1−
(
x
g

)2

∣∣∣∣∣∣∣
FSR

= 100 →
(
xFSR

g

)2

=
ϵlin
100

xFSR = g

√
ϵlin
100

.

Hence, the maximum displacement is governed by the linearity of parallel plates: in this case xFSR = 200 nm
and the corresponding value of capacitance variation results ∆Creal,FSR = 64.36 fF.

Question 2

You have seen during the classes (Lecture n. 4) that the sensitivity1 of a parallel plates MEMS accelerometer,
from input acceleration to di�erential capacitance variation, can be expressed as:

dC

da
= 2

dx

da
· dC
dx

= 2
1

ω2
0

· C0

g

Anyway, in our particular situation, we do not have any information about the accelerometer resonant
frequency. There is an alternative (and much simpler) way to �nd the sensitivity when we have information
about full scale range and linearity error. Indeed, we already know the capacitance variation for an external
acceleration aFRS = 16ĝ, so the sensitivity is given by the following ratio:

dC

da

∣∣∣∣
FSR

=
∆Creal,FSR

FSR
= 4.1 fF/ĝ = 0.4 fF/(m/s2)

In order to evaluate the working resonance frequency, one can write the displacement in terms of applied
force on the seismic mass through the transfer function |T |, remembering that the accelerometer works in
the low-frequency range ω ≪ ω0,

X = F · |T (ω < ω0)| → x =
F

k
→ x =

m · a
k

→ x =
a

ω0
2
→ ω0 =

√
aFSR

xFSR

The obtained resonance frequency value is referred to the accelerometer in operation (the term k above is
the overall sti�ness, as detailed in the following point of the exercise). The reader is invited to note that the
only data used so far are the linearity error, the gap and the value of the full scale range. The resonance
frequency results f0 = 4456Hz, since f0 = ω0/2π.

1note that the sensitivity can be given at various levels... from acceleration to either displacement, or capacitance, or output

voltage... be sure to check what the exercise is asking for. The sensitivity from acceleration to output voltage takes also the

name of scale-factor
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Question 3

The considered sensor presents a capacitive readout based on a parallel-plate con�guration. In order to
evaluate the e�ect of electrostatic softening introduced by the electrostatic force of the parallel plates, one
can rewrite the characteristic equation of the spring-mass-damper system:

mẍ+ bẋ+ kx = Fext → mẍ+ bẋ+ kx = maext + Felec

Then, one can calculate the expression for the electrostatic force, Felec in the case of di�erential parallel
plates con�guration.

Felec = Felec,2 + Felec,1 =
1

2

∂C2

∂x
V 2
DD +

1

2

∂C1

∂x
V 2
DD =

V 2
DD

2

(
∂C2

∂x
+

∂C1

∂x

)
=

=
V 2
DD

2
C0

 1
g(

1− x
g

)2 −
1
g(

1 + x
g

)2


Because of the small displacement approximation, x ≪ g, the electrostatic force Felec can be linearized and
results in the following formula:

Felec =
V 2
DD

2

C0

g

 1

1− 2x
g +

�
�
�(

x
g

)2
− 1

1 + 2x
g +

�
�
�(

x
g

)2

 =
V 2
DD

2

C0

g

4x
g

1−
�
�

��
4
(
x
g

)2
= 2

C0

g2
V 2
DDx

In this way, we can notice the linearized behavior of the electrostatic force with respect to the displacement
performed by the seismic mass. Let us consider a stationary acceleration (i.e. at low frequency if compared
to ω0) applied to the sensor. In this case the general equation of motion becomes:

m�̈x + b�̇x + kx = maext + Felec → kx− Felec = maext → x (kmech + kelec) = maext

having de�ned

kelec = −2
C0

g2
V 2
DD.

In our case kelec = −1.43N/m.
To obtain the value of the mechanical sti�ness kmech, we can use the de�nition of resonance frequency:

ω0 =

√
kmech + kelec

m

With these data, the required mechanical sti�ness becomes kmech = 4.96N/m.

Now we can start with the design of the springs. MEMS sensors usually feature more than one spring.
If the springs share the same `starting-point' ( di�erent anchorages to the substrate are ideally the same
point!) and the same `end-point' (di�erent ends connected to the same moving frame are ideally the same
point!) then they are in a parallel con�guration, sketched in Figure 1.

Figure 1: parallel con�guration of springs.
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In this case, the total force applied to the system, Ftot, can be expressed as the sum of the two elastic forces,
F1 and F2, acting on each spring. Moreover the displacement of each spring is the same, thus the force
balance can be written as:

Ftot = F1 + F2 = k1x+ k2x = (k1 + k2)x = ktotx

Hence we can generalize the total sti�ness ktot,par of a system of n parallel springs as:

ktot,par =

n∑
m=1

km = n · km

where the latter expression holds if the n springs are identical.
Conversely, if the `end-point' of a spring is the `starting-point' of another one they are in a series con�guration,
as shown in Figure 2.

Figure 2: series con�guration of springs.

In this case the total displacement of the system, xtot, is obtained by the sum of the displacements of both
springs, x1 and x2. Besides, due to the action-reaction principle, the force F applied to the system is equal
to that applied to both springs. Thus the total displacement in a series con�guration can be written as:

xtot = x1 + x2 =
F

k1
+

F

k2
= F

(
1

k1
+

1

k2

)
=

F

ktot

from which we derive a generalization of the total sti�ness ktot,ser of a series con�guration of n springs:

1

ktot,ser
=

n∑
m=1

1

km
=

n

km
.

As a tip, one can remember that the overall sti�ness of series/parallel of springs is computed like the overall
capacitance of series/parallel of capacitors in an electrical network.

Figure 3: Four parallel guided-end springs.
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To design the spring system of our accelerometer, one can start from the easiest approach:

1. to de�ne a 1-D displacement, 4 guided-end springs are designed in parallel and placed at the four
corners of the frame, nspring = 4;

2. the simplest spring design has just a single fold per spring, and the sti�ness of each spring is

kspring = Eh
(w
l

)3

In order to maximize the width of each spring, the maximum available length for the suspended springs is
selected (see Table 1). In this way, we can obtain the maximum value wmax,GE , given by

kmech
set
= kGE = nspringkspring = nspringEh

(
wmax,GE

lmax

)3

wmax,GE = lmax
3

√
kmech

nspringEh

obtaining wmax,GE = 1.4 µm. This dimension is not allowed by the process rules of this technology. In order
to widen the springs, one can use a folded spring topology.

Figure 4: Four parallel folded springs (two folds per spring).

To `fold a spring' means to put nfold beams of the same length in series. Given the required elastic sti�ness,
we can write the relation between the width of springs in the `folded' topology and the width of `guided-end'
springs as a function of the number of folds, as

kfolded
set
= kGE

kfolded = ����nspring

nfold
��Eh

(
wfold

���lmax

)3
set
= ����nspring��Eh

(
wGE

���lmax

)3

= kGE

wfold = wGE
3
√
nfold

knowing that wmin = 1.7µm, we can obtain the minimum number of folds (an integer number) as:

wfold = wGE
3
√
nfold > wmin → nfold =

(
wmin

wGE

)3

= 1.79

⇒ nfold = 2

then the corresponding value of the folded spring is wfold = 1.75 µm.
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Question 4

The motion of an accelerometer, and in general of each MEMS sensor, is a�ected by a random �uctuation
force, Fn. In most cases this force arises from the interaction of the inertial mass with the residual gas
particles in the MEMS cavity and the �uctuation force spectrum, SF,n, in units of [N2/Hz] is given by (see
Lecture n. 5):

SF,n = 4kBTb

The �uctuation force spectrum is independent of the frequency, thus it is a white noise.
Now, we can obtain the expression for the noise equivalent acceleration density, NEAD, through the trans-
fer function that relates acceleration to force, TAF (squared, because we are dealing with power spectral
densities):

|TAF |2 =
1

m2

SA,n =
SF,n

m2

NEAD =
√

SA,n =

√
SF,n

m2
=

√
4kBTb

m2
=

√
4kBTω0

mQ

Q =
4kBTω0

m NEAD2

To match the required input-referred acceleration noise density, it turns out that our quality factor should
be Q = 1.74. This is a pretty nice value for an accelerometer, as this kind of device does not bene�t from
large Q values which, on the contrary, would generate undesired ringing under shocks.

Figure 5: A 3-axis MEMS accelerometer from ST used on Huawei phones. The in-plane axes have parameters
similar to those designed in this exercise.
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