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Question n. 1 

Discuss in detail the importance of the amplitude-gain control circuit in a MEMS gyroscope. Draw two 

possible implementations of such a circuit, as studied in the lectures or exercises of the course. For one of 

the implementations, write the expression in s of the loop gain and draw the AGC loop gain modulus. 

 

i. importance of AGC 

A MEMS gyroscope relies on the Coriolis force effect, and it is based on a 2-axis system where a motion is 

forced on one axis (e.g. the x-axis), and sensed along the other one (e.g. the y-axis), the angular rate being 

orthogonal to both of them (e.g. along the z-axis). In particular, the displacement in the sense direction 𝑦𝑠 

per unit input rate Ω can be written as: 

𝑦𝑠

Ω
=

𝑥𝑑

Δ𝜔
 

where Δ𝜔 is the -3 dB width of the sense-mode peak or the split between modes, depending on whether 

operation is in mode-matched or mismatch conditions. As a consequence, to guarantee that the sensitivity 

remains constant over time and environmental changes, it is fundamental that the amplitude of the 

sinusoidal drive displacement, 𝑥𝑑, is well controlled and kept constant. 

The drive mode, which sets this amplitude, is based on a harmonic oscillator, where Barkhausen criteria are 

satisfied forcing a sinusoidal force 𝐹𝑑𝑟𝑖𝑣𝑒 at the drive fingers. However, the displacement 𝑥𝑑, in absence of a 

specific control, will change due to quality factor changes following: 

𝑥𝑑 = 𝐹𝑑𝑟𝑖𝑣𝑒 ⋅
𝑄𝑑

𝑘𝑑
 

As the quality factor changes (i) from part to part due to process spread and (ii) under temperature changes, 

it is mandatory to reject drive displacement changes which would, otherwise, change the sensitivity. 

ii. possible implementations 

For the aforementioned reasons, an amplitude-gain control (AGC) circuit is implemented as a negative 

feedback loop that controls the output of the charge amplifier, which is, indeed, a signal proportional exactly 

to the displacement: 

𝑉𝑜𝑢𝑡,𝐶𝐴 = 𝑥𝑑 ⋅
𝜂

𝐶𝐹𝑑
 

The AGC circuit takes this AC sinusoidal 

signal, generates a corresponding DC signal 

by rectifying it and taking its mean value, 

and then compares it to a DC voltage 

reference. The difference is used as the 

error signal for the negative feedback: the 

amplitude of the drive signal is indeed 

changed accordingly, either increased or 

reduced, so to keep the amplitude of the 

signal 𝑉𝑜𝑢𝑡,𝐶𝐴, and thus of 𝑥𝑑, constant. 

The action on the drive voltage and thus on 

the drive force can be implemented in at 

least two different ways: the first circuit 



 

above (seen in lectures) reacts by changing the resistance of a voltage divider which is part of the drive loop, 

thus changing the drive amplitude. 

The second solution, shown aside, 

changes the positive and negative bias 

voltages of a comparator, so to 

change the square wave voltage 

applied to the drive port (seen 

during the exercises). 

iii. loop gain 

For the second solution we can 

write the expression of the loop gain 

considering the the AGC operates on 

the amplitude of signals. 

The contributions to the AGC loop gain 

are: 

- The MEMS, which appears with its own base-band model (a pole at the resonance frequency divided 

by twice the Q factor); 

- The charge amplifier, whose gain shall be calculated only at the drive frequency and is not a function 

of s; 

- The rectifier and low-pass filter, which overall contribute with a gain of 2/π due to the filtering of a 

rectified sinewave, and with the LP filter pole; 

- The INA gain 

- The amplitude of the first harmonic of a square wave, which is 4/π. 

 

This is thus a 2-pole system and a sample loop gain is shown below. Note that the pole of the LPF shall be 

sized to guarantee stability of the system. 
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Question n. 2 

A differential parallel plate MEMS accelerometer is 

designed for next-generation cube satellites missions, 

for vibration monitoring during moon landing. The 

sensor has the specifications in the Table. 

(i) evaluate the analog accelerometer sensitivity (in 

units of [V/g]) and the digital accelerometer 

sensitivity (in units of [levels/g]); 

(ii) evaluate the accelerometer noise, input referred 

in terms of acceleration (in units of [g/√Hz]); 

(iii) assume that there is a native mechanical offset 

of the accelerometer of 75 nm towards the plate 

n. 1. Graph the % linearity error within the full-

scale range of the input acceleration. 

(i) The analog sensitivity of the accelerometer is computed as the ratio of the output voltage of the charge-

amplifier and the input acceleration. The text specifies the input range of the accelerometer to be ±16 ĝ; 

assuming that the feedback capacitance of the amplifier stage will be sized to exploit the full voltage 

dynamics ±𝑉DD, we can compute the sensitivity as: 

𝑆𝐹𝑎 =
𝑉DD

𝑎FSR
=

5 V

16 ĝ
= 0.3125

V

ĝ
 

The digital sensitivity is the ratio of the full-scale numerical output of the ADC and the full-scale input 

acceleration; it can be evaluated by multiplying the analog sensitivity we just computed by the gain 

[levels/V] of the 16-bit ADC: 

𝐺ADC =
1

LSB
=

1

(
FSRADC

2𝑛 )
=

2𝑛

2𝑉DD
=

216

10 V
= 65536 

levels

V
 

𝑆𝐹𝑑 = 𝑆𝐹𝑎 ⋅ 𝐺ADC = 0.3125
V

ĝ
⋅ 65536 

levels

V
= 2048

levels

ĝ
 

(ii) The input-referred acceleration noise can be computed as the sum of the thermo-mechanical and 

electronic noise contributions. 

The expression for the input-referred thermo-mechanical noise is: 

Process thickness 100 µm 

Process gap 1.5 µm 

Stator and Amplifier bias voltage ±5 V 

Mechanical stiffness 121 N/m  

Sensor effective area (615 µm)2 

Parallel-plate length 485 µm 

Parallel-plate number 14 

Full-scale range ± 16 g 

ADC number of bits 16 

Damping coefficient 10-5 kg/s 

Amplifier voltage noise 20 nV/√Hz 

Parasitic capacitance 5 pF 

Physical Constants 

ρSi = 2370 kg/m3; 

ε0 = 8.85 10-12 F/m;  

kb = 1.38 10-23 J/K; 

q = 1.6 10-19 C; 

T = 300 K; 

 



 

𝑁𝐸𝐴𝐷 = √
4𝑘𝑏𝑇𝑏

𝑚2
 

We need to compute the mass: 

𝑚 = 𝜌Si ⋅ (𝐴effℎ) = 2370
kg

m3
⋅ [(615 μm)2 ⋅ 100 μm] = 89.6 nkg 

and we can then evaluate the expression for the NEAD: 

NEAD = √
4𝑘𝑏𝑇𝑏

𝑚2
= √

4 ⋅ 1.38 ⋅ 10−23 𝐽
𝐾 ⋅ 300 K ⋅ 10−5 kg

s
(89.6 nkg)2

 = 462.8
nĝ

√Hz
 

The value is quite low, because of the large mass of the sensor. The electronic noise contribution can be 

evaluated at the output of the charge-amplifier and input-referred by dividing by the analog sensitivity 

computed in point (i): 

𝑆𝑎,in =
𝑆V,out

𝑆𝐹𝑎
=

𝑆𝑉,oa [1 +
𝐶p + 2𝐶0

𝐶F
]

𝑆𝐹𝑎
 

where 𝑆V,oa is the amplifier voltage noise, 𝐶p + 2𝐶0 is the overall parasitic capacitance between the virtual 

ground of the charge-amplifier and ground, and 𝐶F is the feedback capacitance. Note that the rest 

capacitance 𝐶0 of the parallel-plate electrodes adds a non-negligible contribution to the parasitics: 

𝐶0 =
𝜀0ℎ𝐿pp𝑁pp

𝑔
=

8.85 ⋅ 10−12 F
m ⋅ 100 μm ⋅ 485 μm ⋅ 14 

1.5 μm
= 4 pF 

The feedback capacitance 𝐶𝐹 should be sized to exploit the full voltage dynamics of the amplifier: 

𝑉𝑜𝑢𝑡(𝑎FSR) = 2
𝑉DD

𝐶𝐹

𝑑𝐶

𝑑𝑥

1

𝜔0
2 𝑎FSR = 𝑉DD 

In order to size 𝐶F, we need to compute the capacitive variation per unit displacement 
𝑑𝐶

𝑑𝑥
 and the radial 

resonance frequency 𝜔0 of the accelerometer first: 

𝑑𝐶

𝑑𝑥
=

𝐶0

𝑔
=

4 pF

1.5 μm
= 2.67 

fF

nm
 

𝜔0 = √
𝑘

𝑚
= √

𝑘m − 𝑘el

𝑚
=

√𝑘m −
2𝑉DD

2 𝐶0

𝑔2

𝑚
=

√
121

N
m −

2 ⋅ (5 V)2 ⋅ 4 pF
(1.5 μm)2

89.6 nkg
= 2𝜋 ⋅ 3 

krad

s
 

which corresponds to a resonance frequency 𝑓0 = 3 kHz. 

We can now compute 𝐶𝐹 as: 

𝐶F =

2𝑉DD
𝑑𝐶
𝑑𝑥

1
𝜔0

2

𝑆𝐹𝑎
=

2 ⋅ 5 V ⋅ 2.67 
fF

nm ⋅
1

2𝜋 ⋅ 3 krad/s

0.3125
V
ĝ

= 2.35 pF 

Finally, the input-referred electronic noise contribution can be computed: 
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𝑆𝑎,in =
𝑆V,out

𝑆𝐹𝑎
=

20 
nV

√Hz
⋅ [1 +

5 pF + 2 ⋅ 4 pF
2.35 pF

]

0.3125 
V
ĝ

= 418.32 
nĝ

√Hz
 

The overall input-referred noise of the accelerometer is given by the quadratic sum of the two contributions: 

𝑆𝑎,TOT = √NEAD2 + 𝑆𝑎,in
2 = 623.8

nĝ

√Hz
 

(iii) The linearity error in absence of mechanical offset has the following expression: 

𝜀% = 100 ⋅
𝑥𝑚𝑎𝑥 ⋅ [

(𝑥𝑚𝑎𝑥/𝑔)2

1 − (𝑥𝑚𝑎𝑥/𝑔)2 
 ]

𝑥max [
1

1 − (𝑥max/𝑔)2 
 ]

= 100 ⋅ (𝑥𝑚𝑎𝑥/𝑔)2 

where 𝑥max is the displacement of the mass under a full-scale acceleration: 

𝑥max =
𝑎FSR

𝜔0
2 = 440 nm 

The effect of a mechanical offset 𝑥os is just a horizontal translation of the curve, as shown in the plot below. 

Note that, due to the mechanical offset, the linearity error is asymmetric in the range of input accelerations 

(±16 ĝ): 

𝜀%(+16 ĝ) = 100 ⋅ (
𝑥max + 𝑥os

𝑔
)

2

= 11.8% 

𝜀%(−16 ĝ) = 100 ⋅ (
−𝑥max + 𝑥os

𝑔
)

2

= 3.9% 

A qualitative graph is shown below: 
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Question n. 3 

An imaging sensor for lunar soil black/white pictures 

is based on a 3-transistor architecture, featuring the 

parameters in the table.  

(i) draw the anode voltage as a function of time 

during one acquisition at the maximum 

photon flux, assuming that the camera 

mounts pixel-level micro-lenses; 

(ii) list all noise sources, expressed in terms of 

electrons rms, choose the number of bits for 

the ADC, and calculate the dynamic range; 

(iii) draw a graph of the SNR as a function of the 

photocurrent for the given integration time 

at the minimum temperature, highlighting 

the four most relevant values on the x and y axis. 

 

 

 

 

 

(i) 

The integration on a 3T pixel occurs on the parallel of the depletion capacitance and of the parasitic gate 

capacitance: 

𝐶𝑑𝑒𝑝 =  𝜖0𝜖𝑆𝑖

𝑙𝑝𝑖𝑥
2  𝐹𝐹

𝑥𝑑𝑒𝑝
= 2.34 𝑓𝐹 →   𝐶𝑖𝑛𝑡 = 𝐶𝑑𝑒𝑝 + 𝐶𝑔 = 2.64 𝑓𝐹 

Note that the depletion capacitance includes only the active photodiode area and not the entire area. The 

signal, instead, thanks to the microlenses, is entirely collected as: 

𝑖𝑝ℎ = 𝜙 𝜂 𝑞 𝑙𝑝𝑖𝑥
2 = 1.18 𝑝𝐴 

This is a relatively large photocurrent, consistent with the fact that we are calculating it for the maximum 

input signal. The dark current is instead calculated as: 

𝑖𝑑 = 𝑗𝑑  𝑙𝑝𝑖𝑥
2  𝐹𝐹 = 0.41 𝑓𝐴 

gathered just underneath the photodiode active area, and thus accounting for the FF. The signal at the 

anode node during integration decreases from the reset voltage, approximately in a linear manner: 

𝑉𝑝𝑖𝑥(𝑡) = 𝑉𝐷𝐷 −
𝑖𝑝ℎ ⋅ 𝑡

𝐶𝑖𝑛𝑡
 

In the graph below this signal is translated on the horizontal axis to account for the reset time. 

Maximum photon flux 2∙1017 ph/s/m2 

Pixel size (7 µm)2 

Fill factor 83% 

Quantum efficiency 0.75 

Dark current density 10 aA/(µm)2 

T range 140 - 400 K 

Depletion region width 1.8 µm 

Parasitic gate capacitance 0.3 fF 

Supply voltage 5 V 

Integration time 5 ms 

Reset time 0.5 ms 

%PRNU 1 % 

%DSNU 5.5 % 

Physical Constants 

ε0 = 8.85 10-12 F/m;  

εSi = 11.7 

kb = 1.38 10-23 J/K; 

q = 1.6 10-19 C; 



 

 

And the value at the chosen integration time is indicated as 2.78 V. 

 

(ii) 

All noise sources can be calculated from the expressions below: 

𝜎𝑠ℎ𝑜𝑡,𝑑 = √𝑞 𝑖𝑑  𝑡𝑖𝑛𝑡/𝑞 = 3.57 𝑒𝑟𝑚𝑠
−  

𝜎𝑘𝑇𝐶_𝑇𝑚𝑖𝑛
= √𝑘𝐵 𝑇𝑚𝑖𝑛 (𝐶𝑔 + 𝐶𝑑𝑒𝑝)/𝑞 = 14.1  𝑒𝑟𝑚𝑠

−  

𝜎𝐷𝑆𝑁𝑈 = 𝑖𝑑  𝑡𝑖𝑛𝑡

𝜎𝐷𝑆𝑁𝑈,%

100
/𝑞 = 0.7  𝑒𝑟𝑚𝑠

−  

𝜎𝑠ℎ𝑜𝑡,𝑝ℎ = √𝑞 𝑖𝑝ℎ  𝑡𝑖𝑛𝑡/𝑞 = 191.7  𝑒𝑟𝑚𝑠
−  

𝜎𝑃𝑅𝑁𝑈 = 𝑖𝑝ℎ  𝑡𝑖𝑛𝑡

𝜎𝑃𝑅𝑁𝑈,%

100
/𝑞 = 367.5  𝑒𝑟𝑚𝑠

−  

The fact that signal dependent noise sources are largely dominant is consistent with the fact that we are 

calculating noises for the maximum signal value. In sizing the number of bits of the ADC, however, we shall 

consider that the camera will be often shooting at low input signals, and we cannot corrupt the 

performance at low signal levels. We thus choose to size the n. of bits such that quantization noise equals 

the lowest possible signal-independent noise sources, i.e. at the lowest integration time (shot and DSNU 

negligible) and at the lowest temperature: 

𝜎𝐴𝐷𝐶 =
(𝐶𝑔 + 𝐶𝑑𝑒𝑝) 𝑉𝐷𝐷

2𝑁𝑏𝑖𝑡√12

1

𝑞
= 𝜎𝑘𝑇𝐶𝑇𝑚𝑖𝑛

→    𝑁𝑏𝑖𝑡 = log2 (
𝑉𝐷𝐷

√12

𝐶𝑖𝑛𝑡

𝑞

1

𝜎𝑘𝑇𝐶𝑇𝑚𝑖𝑛

) = 11 

The corresponding quantization noise turns out to be 11.6 electrons rms. 

The DR can be thus calculated as: 

𝑁𝑒𝑙,𝑚𝑎𝑥 =
𝑉𝐷𝐷𝐶𝑖𝑛𝑡

𝑞
= 82486 →   𝐷𝑅 = 20 log10

𝑁𝑒𝑙,𝑚𝑎𝑥

√𝜎𝐴𝐷𝐶
2 + 𝜎𝑠ℎ𝑜𝑡,𝑑

2 + 𝜎𝑘𝑇𝐶
2 + 𝜎𝐷𝑆𝑁𝑈

2

= 72.9 𝑑𝐵 

Note that the DR is relatively large for a 3T pixel. This is due to the large area and the large supply voltage. 
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(iii) 

The four points of interest for the SNR graph are in this situation: 

- The point of saturation (maximum SNR); 

- The point where PRNU equals shot noise; 

- The point where shot noise equals signal-independent noise sources 

- The point where the SNR equals 0 dB 

 

They can be calculated using the formulas below: 

𝑖𝑝ℎ,𝑚𝑎𝑥 =
𝐶𝑖𝑛𝑡𝑉𝐷𝐷

𝑡𝑖𝑛𝑡
= 2.64 𝑝𝐴 

𝑖𝑝ℎ,𝑐𝑟𝑜𝑠𝑠1
=

𝑞𝑡𝑖𝑛𝑡

(𝑡𝑖𝑛𝑡𝜎𝑃𝑅𝑁𝑈,%)
2 = 320 𝑓𝐴 

𝑖𝑝ℎ,𝑐𝑟𝑜𝑠𝑠2
= (𝜎𝑘𝑇𝐶

2 + 𝜎𝑠ℎ𝑜𝑡,𝑑
2 + 𝜎𝐷𝑆𝑁𝑈

2 + 𝜎𝑞𝑢𝑎𝑛𝑡
2 )

𝑞

𝑡𝑖𝑛𝑡
= 11.1 𝑓𝐴 

𝑖𝑝ℎ,𝑚𝑖𝑛 =
𝑞

𝑡𝑖𝑛𝑡
√𝜎𝑘𝑇𝐶

2 + 𝜎𝑠ℎ𝑜𝑡,𝑑
2 + 𝜎𝐷𝑆𝑁𝑈

2 + 𝜎𝑞𝑢𝑎𝑛𝑡
2 = 0.6 𝑓𝐴 

 

We already know that the SNR for the last situation is 0 dB. The other SNRs can be calculated using the 

well-known SNR formula, leading then to the graph below where we observe three regions. 

𝑆𝑁𝑅 = 20 log10

𝑖𝑝ℎ𝑡𝑖𝑛𝑡/𝑞

√𝜎𝐴𝐷𝐶
2 + 𝜎𝑠ℎ𝑜𝑡,𝑑

2 + 𝜎𝑘𝑇𝐶
2 + 𝜎𝐷𝑆𝑁𝑈

2    + 𝜎𝑠ℎ𝑜𝑡,𝑝ℎ
2    + 𝜎𝑃𝑅𝑁𝑈

2

 

In the first one, the SNR grows linearly with the signal as noise is dominated by the four signal-independent 

sources. In the second one, the growth decreases in slope due to the appearance of shot noise. Finally, 

there is no longer any improvements, due to the dominant PRNU term. 

 

  



 

 

 


