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Question n. 1 

Describe the electrostatic softening phenomenon for a MEMS based parallel-plate accelerometer, 

clearly indicating and commenting the parameters it depends on, and the associated risks. Describe 

the consequences of softening issues and the trade/offs that, in turn, arise on the accelerometer design. 

 

The application of an unavoidable 

electrostatic force between the sensing plates 

and the rotor in a parallel-plate accelerometer 

gives rise to a softening effect, resulting from 

the calculations below. We note that this 

force is unavoidable, and though below we 

discuss the case of a constant DC voltage 

between plates, even in presence of a zero-

mean AC voltage, as the force goes with the 

square of the voltage, a similar effect still 

arises. 

Referring to the scheme aside, the force 

expression as below: 
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can be simplified through linearization, included in the quasi-stationary expression of the spring mass 

damper system, and leads to the following result: 
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This indicates that a force proportional to the displacement is generated not only by the elastic 

restoring but also, and with opposite sign, by the electrostatic forces. As a consequence, this is 

equivalent to a lower overall stiffness, a phenomenon known as electrostatic softening. The effect, as 

shown by the equation, has a strong dependence on the biasing voltage and on the gap (overall, 1/g3). 

 

There is one major risk: as soon as the sizing is such that the equivalent electrostatic stiffness, 

−2𝑉𝐷𝐷
2 𝐶0

𝑔2, overcomes in modulus the elastic stiffness kmec, the structure will be subject to mechanical 

instability and the rotor will tend to collide onto either of the parallel plates (with short circuit in 

between being limited by the presence of mechanical stoppers). This occurs for a biasing voltage 

value, known as pull-in voltage, equal to: 

𝑉𝐷𝐷,𝑃𝐼 = √
𝑔3  𝑘𝑚𝑒𝑐

2 𝜀0𝐴 𝑁
 

Indeed, mathematically speaking, for such a value, the full equation written above loses any stability 

points. This maximum voltage may be even lowered when the maximum impinging acceleration 

occurs, indicating that safe margins need to be taken from that value. 

 

There are numerous comments that can be made about the effects that softening generates in the 

optimal design of an accelerometer, when taking also into account the expression of the sensitivity: 
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- a small gap enhances the sensitivity… but it is unfavourable for pull-in issues… 

- a large mass enhances the sensitivity… but take care of bandwidth and area limits… 

- a small overall stiffness enhances the sensitivity… but it is unfavourable for pull-in issues and 

max bandwidth… 

- a large bias voltage enhances the sensitivity… but it facilitates pull-in and is limited by the 

consumption of the IC… 

- the in-operation resonance frequency is decreased from the nominal design value, as it shall 

be now written as 𝝎𝟎 = √
𝒌𝒎𝒆𝒄+𝒌𝒆𝒍𝒆𝒄

𝒎
 

- linearity is limited due to the increased electrostatic forces at decreasing gaps, so under large 

accelerations. 

 

One can conclude that, due to such effects, it is not easy to enhance the sensitivity in PP axels without 

acting on the process. 
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Question n. 2 

An imaging pixel for high temperature applications is characterized, at a short integration time, 

through the photon transfer curve (PTC) shown below in terms of digital numbers (DN), with separate 

contributions of photon shot noise and FPN identified through different experiments. Assuming a 

unitary quantum efficiency: 

(i) calculate the gain K from input photons to digital number and 

the number of bits of the ADC; 

(ii) calculate % PRNU noise, quantization noise, and read noise in 

electrons rms. Then calculate the full well charge in electrons 

rms, the dynamic range in dB; 

(iii) calculate the maximum SNR, in dB, with two different 

approaches; 

(iv) finally, estimate the integration capacitance and the maximum 

pixel voltage swing (assume to operate at 600 K). 

 
 

  

 

 

(i) 

According to the PTC relationship, the gain K shall be calculated looking at the region where shot 

noise dominates. In this specific graph, there is not such a  region completely dominated by photon 

shot noise, but we can do even better, as we directly have the individual photon shot noise contribution 

(in blue circles).  We find that: 
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Physical Constants 

εSi = 11.7∙8.85 10-12 F/m  

kb = 1.38 10-23 J/K; 

q = 1.6 10-19 C; 

T = 600 K; 



 

Additionally, as the maximum signal level is around 3000, assuming a well designed ADC we can 

expect that the maximum number of levels is the power of 2 just above this number, i.e.: 

𝑁𝑏𝑖𝑡 ≥ log2 3000 = 11.55 →    12 𝑏𝑖𝑡 

 

(ii) 

Looking now at the portion of the PTC dominated by PRNU, we can evaluate (in any point, but I’ll 

choose the one with noise equal to 1) that: 

𝜎𝑃𝑅𝑁𝑈,𝐷𝑁 = 𝜎𝑃𝑅𝑁𝑈,% ⋅ 𝐷𝑁 →    𝜎𝑃𝑅𝑁𝑈,% =
𝜎𝑃𝑅𝑁𝑈,𝐷𝑁

𝐷𝑁
=

1

80
= 1.25% 

 

It is also easy to evaluate quantization noise, as considering 1 DN as the LSB we direclty get: 

𝜎𝑞𝑢𝑎𝑛𝑡,𝐷𝑁 =
1𝐷𝑁

√12
= 0.29 𝐷𝑁 

 

As this is negligible w.r.t. read noise in the flat region, and as the sensor is working at short integration 

times, we can expect that the dominant noise source at low signal sis kTC noise and thus: 

𝜎𝑘𝑇𝐶,𝐷𝑁 = 2.8 𝐷𝑁 

 

We can turn this noise terms into electrons rms through the gain K, so to achieve: 

𝜎𝑞𝑢𝑎𝑛𝑡 =
𝜎𝑞𝑢𝑎𝑛𝑡,𝐷𝑁

𝐾
= 4.6 𝑒𝑟𝑚𝑠

−  

𝜎𝑘𝑇𝐶 =
𝜎𝑘𝑇𝐶,𝐷𝑁

𝐾
= 44.8 𝑒𝑟𝑚𝑠

−  

Given the full well charge of 3000 DN and the minimum noise of 2.8 DN, the DR is easily calculated 

to be around 60 dB. Given the unitary quantum efficiency, the FWC expressed in electrons is just 

calculated as: 

𝐹𝑊𝐶 =
𝐹𝑊𝐶𝐷𝑁

𝐾
=

3000 𝐷𝑁

0.06 𝐷𝑁/𝑝ℎ
= 48000 𝑝ℎ = 48000 𝑒− 

 

(iii) 

The maximum SNR can be calculated graphically just before saturation of the black curve as: 

𝑆𝑁𝑅𝑚𝑎𝑥 = 20 log10

2700

28
= 39 𝑑𝐵 

As an alternative, as we know that PRNU noise dominates, the maximum SNR can be expressed as: 

𝑆𝑁𝑅𝑚𝑎𝑥 = 20 log10

𝐷𝑁𝑚𝑎𝑥

𝜎𝑃𝑅𝑁𝑈,% ⋅ 𝐷𝑁𝑚𝑎𝑥
= 20 log10

1

𝜎𝑃𝑅𝑁𝑈,%
= 38 𝑑𝐵 

Results from the two techniques are rather consistent. 

 

(iv) 

Finally, from the kTC value we ca evaluate the capacitance as: 

𝜎𝑘𝑇𝐶 =
√𝑘𝑇𝐶

𝑞
→   𝐶 =  6.2 𝑓𝐹 

Once C is known, it is easy to calculate the voltage swing from the maximum number of electrons: 

𝑉𝐷𝐷 =
𝐹𝑊𝐶 ⋅ 𝑞

𝐶
= 1.2 𝑉 
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Question n. 3 

A high-performance z-axis gyroscope is characterized 

through the Allan variance technique, with the results shown 

in the figure (note that the vertical axis is in °/h, with 1°/h = 

1/3600 dps): 

(i) find the input referred white noise, the input referred 

1/f noise, and plot a power spectral density, in 

dps/√Hz, of the gyroscope output, from 0.1 mHz to 

100 Hz; 

(ii) the gyroscope is used for navigation purposes in 

experiments with a duration of 300 s. Indicate the 

typical angle error obtained at the end of such 

experiments; 

(iii)given the parameters in the table, verify whether 

white noise is given by the sensor or the electronics. 

 
Physical 

Constants 

ε0 = 8.85 10-12 F/m  

kb = 1.38 10-23 J/K; 

T = 300 K; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) 

White noise is related to the angle random walk that can be easily estimated on an Allan variance 

graph by looking at the y-axis value of the point at 1s on the portion of the curve with a -10 dB/dec 

slope. In this specific case, this yields about 9 °/h = 2.5 mdps. The white noise value is found then as: 

𝜎Ω = 2.5 
𝑚𝑑𝑝𝑠

√𝐻𝑧
√2 = 3.5 

𝑚𝑑𝑝𝑠

√𝐻𝑧
 

 

1/f noise is instead related to the flat part of the Allan variance graph, here corresponding to about 

0.4 °/h = 111 µdps: the 1/f noise coefficient becomes: 

𝛼𝑛 =
(0.4 𝜇𝑑𝑝𝑠)2

2 ⋅ ln 2
= 8.9 ⋅ 10−9 𝑠2 

Resonance frequency 25 kHz 

Supply 0 - 3 V 

Full-scale range ±3000 

dps 

Amplifier voltage noise 20 

nV/√Hz 

Feedback capacitance 250 fF 

Parasitic capacitance 10 pF 

INA gain  1 

Sense damping (1/2 

structure) 
8∙10-6 

kg/s 

Drive displacement 4 µm 

Sense mass (1/2 structure) 5 nkg 



 

The derived PSD can be thus written and graphed as: 

√𝑆Ω = √(3.5
𝑚𝑑𝑝𝑠

√𝐻𝑧
)

2

+
8.9 ⋅ 10−9 𝑠2

𝑓
  

 

(ii) 

For an observation interval of 300 s we find a typical noise of 0.6 °/h corresponding to about 165 

µdps. This simply means that after 300 s, the most probable error in angle estimation is: 

𝜖𝜃 = 𝜎𝑑𝑝𝑠(300 𝑠) ⋅ 300 𝑠 = 0.05° 

 

(iii) 

The expression of noise from the thermomechanical and the electronics domains are reported below: 

𝜎𝑑𝑝𝑠,𝑀𝐸𝑀𝑆 =
1

√2

1

𝑥𝑑𝑓0𝑚𝑠
√𝑘𝐵𝑇𝑏𝑠 

 

𝜎𝑑𝑝𝑠,𝐴𝑀𝑃𝐿 =
√2𝑆𝑉𝑛

(1 +
𝐶𝑃

𝐶𝐹
)

𝑆𝐹
 

 

Once the scale factor (SF) is calculated as VDD/FSR, all other parameters are known from the table 

and yield 2.3 mdps/√Hz for both the contributions, indicating that the system is well balanced, and 

that the quadratic sums yields 3.3 mdps/√Hz, a value quite close to the one observed in the root Allan 

variance. 
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