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Question n. 1 

Nowadays, the optimization of the design of sensors of various physical quantities is assisted by CAD 

softwares. Describe in details (i) the motivations for using a CAD software, (ii) the typical steps that one 

should implement in a Finite-Element-Method (FEM) simulation, and (iii) the types of simulations that can 

be performed along with their purpose. Finally, (iv) clarify what a “coupled multi-physics” simulation implies. 

Possibly, bring examples related to the topics studied in the course all along your discussion. 

 

While a theoretical background is of paramount importance in the co-design of sensor systems (i.e. sensor + 

electronics), in order to understand several trade-offs and minimize their effects, at an advanced level the 

use of computer-aided-design software is nowadays essential. 

The main motivations lie in that theoretical equations that can bring a closed-form solution have usually 

limitations that (a) neglect second- or third-order effects (e.g. mechanical or electrostatic nonlinearity in 

MEMS), or (b) are related to geometrical approximations of the system (e.g. equations referring to a point-

like mass instead of a full rigid body, or equations that model 1D depletion region instead of full 3D 

volumes…), or finally (c) cannot easily manage multi-physics solutions where different sets of coupled partial 

differential equations should be solved (more on this point will be discussed later). 

In simulating sensors, the main steps consist in (a) the definition of the problem geometry, which can be a 

full 3D description, or an approximated 2D simplification. The latter is valid whenever we have conditions of 

simmetricity and helps in reducing computational cost and thus the time required to get a solution. It can be 

however imprecise at geometry edges, where conditions of simmetricity or continuity of the problem are 

lost. The second step is generally (b) the description of the set of partial differential equations that describe 

our problem (e.g. the Newton’s law and electrostatic laws for MEMS sensors, or the Poisson-Electron-Hole 

equations in semiconductor-based photodiodes…), along with their boundary conditions (Dirichlet or 

Neumann conditions). From this standpoint, modern simulators already have these sets of equations 

embedded, relieving the user’s need for writing the entire equations code. The third step consists in (c) 

generating the mesh, i.e. the set of finite element (points and volumes) where the software will iteratively 

solve the set of PDE to find a converging solution. Meshes can be less or more refined, obviously leading to 

faster or more accurate results, and can be formed by different geometrical elements (e.g. triangles or 

quadrangles in 2D domains). Finally, the fourth and fifth steps consist in letting the software solve the 

problem and – if a converging solution is found – in the analysis of the results. The latter point is of utmost 

importance, as the evaluation of results from a simulator shall be always a critical steps where the obtained 

behavior is effectively understood.  

In the specific case of MEMS sensors, the mostly adopted types of simulations are “stationary” analysis, e.g. 

to evaluate the value of an electrical capacitance in complicate electromechanical geometries, or to evaluate 

the stress-strain (i.e. force-displacement) relationship, finding thus the value of the elastic stiffness. In light 

sensors, stationary analysis can be used to evaluate the biasing conditions in a photodiode (extension of the 

depletion region, maximum electric field, ecc…). Additionally, the so-called “eigenfrequency” simulations 

can be performed for MEMS sensors, to evalute the freqeuncy of the modes of interest and also of undesired 

high-order modes. 

Typically, the theoretical design will guide the first draft design of the sensor, which will be then refined 

through simulation steps to adjust the desired performance to the target specifications, and the robustness 

against possible process spread which can be verified through parametric simulations. 

Simulators are even more important when problems to solve involve mutiple physical domains, like 

electrostatic, mechanics, thermal, fluidic, semiconductor… Physical quantities will interact, generating so-



 

called coupled multi-physics problems: to bring a MEMS-related example, a force generated in the 

electrostatic domain (between the arms of a capacitor) affects the results of a mechanical simulation which, 

in turn, due to electrostatic softening effects (gap changes) influences again the electrostatic domain. Such 

coupled equations are very often hard to solve in a closed loop-form, especially where complicated 

geometries are under analysis. Here, the use of simulators becomes almost unavoidable. 
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Question n. 2 

You are tasked with finalizing the sizing of a dual-mass yaw gyroscope. Once fabricated, the gyro will be 

tested for scale-factor stability within the consumer temperature range (-40°C to 85°C) using a custom 

electronic setup. The relevant parameters for the device (given for the half-structure) and for the electronics 

are reported in the table. All parameters are given at room temperature (𝑇 = 25°𝐶): 

(i) the maximum acceptable linearity error is 1%. Compute the required mode-split value, so to cope 
with the other given specifications; 

(ii) compute the required number of parallel plates to design a well-balanced system in terms of 
noise, adopting reasonable approximations where needed (for the sake of simplicity, assume 

that the 𝑄𝑠 factor is independent of the number of parallel plates); 

(iii) compute the maximum expected relative variation of the sensitivity 𝑑𝑉𝑜𝑢𝑡/𝑑Ω, induced by the 
device and electronics temperature variations (for the sake of simplicity, assume that the AGC 
loop-gain is independent of temperature). 

Physical Constants 

ε0 = 8.85 10-12 F/m  

kb = 1.38 10-23 J/K; 

T = 300 K; 

q = 1.6 10-19 C; 

 

 

 1) The linearity error for a differential readout configuration is evaluated at the FSR to maximize the 

sensitivity: 

𝜖𝑙𝑖𝑛 = (
𝑦𝐹𝑆𝑅

𝑔
)

2

= 0.1%    ⇒     𝑦𝐹𝑆𝑅 = 𝑔√𝜖𝑙𝑖𝑛 = 120 𝑛𝑚 

The sensitivity is evaluated at the full-scale range, but is also expressed as the ratio of drive displacement 

amplitude and frequency split: 

𝑆𝑦 =
𝑑𝑦

𝑑Ω
=

𝑦𝐹𝑆𝑅

𝐹𝑆𝑅
=

120 𝑛𝑚

2000 𝑑𝑝𝑠
= 60

𝑝𝑚

𝑑𝑝𝑠
= 3.438

𝑛𝑚

𝑟𝑎𝑑/𝑠
 

𝑆𝑦 =
𝑥𝑑𝑎

Δ𝜔𝑀𝑆
=

𝑥𝑑𝑎

𝜔𝑑 − 𝜔𝑠
 

Table of parameters 

Full-scale range FSR 2000 dps 

Linearity error 𝜖𝑙𝑖𝑛 1% 

Drive frequency 𝑓𝑑  22000 

Drive mass 𝑚𝑑 3 nkg 

Sense mass 𝑚𝑠 7 nkg 

Sense mode Q factor 𝑄𝑠 500 

Capacitive gap 𝑔 1.2 μm 

N. of drive fingers 𝑁𝐶𝐹 15 

Rotor voltage 𝑉𝑟𝑜𝑡 10 V 

Op-amp voltage noise √𝑆𝑣𝑛 20 nV/√Hz 

Parasitic capacitance 𝐶𝑃 10 pF 

Process height ℎ 20 μm 

PP length 𝐿𝑝𝑝 100 μm 

Feedback capacitance 𝐶𝐹 200 fF 

Temperature coefficient 
of feedback capacitance 

𝑑𝐶𝐹

𝑑𝑇
 40 ppm/K 

AGC loop gain 𝐺𝑙𝑜𝑜𝑝𝐴𝐺𝐶
 30 

AGC reference  𝑉𝑟𝑒𝑓 1.5 V 

FWR = full wave rectifier 

LPF = Low-pass filter 



 

The drive displacement amplitude can be calculated by the closed loop gain of the drive loop, knowing the 

value of the AGC voltage reference: 

𝑥𝑑𝑎 =
𝑉𝑟𝑒𝑓

(
2𝑁𝐶𝐹𝜖0ℎ

𝑔 ⋅
𝑉𝑅𝑂𝑇
𝐶𝐹,𝑑

⋅
2
𝜋)

= 5.32 𝜇𝑚 

and thus, the frequency split is calculated inverting the formula of the sensitivity: 

Δ𝜔𝑀𝑆 =
𝑥𝑑𝑎

𝑆𝑦
=

𝐹𝑆𝑅 ⋅ 𝑥𝑑𝑎

𝑦𝐹𝑆𝑅
= 1549 

𝑟𝑎𝑑

𝑠
    ⇒    Δ𝑓𝑀𝑆 ≈ 246 𝐻𝑧 

𝑓𝑠 = 𝑓𝑑 + Δ𝑓𝑀𝑆 ≈ 22246 𝐻𝑧 

 

2) To design a well-balanced system the input-referred electronic noise should be approximately equal to 

the intrinsic contribution of the gyroscope. The gyro force noise, referred to the NERD, is: 

𝑁𝐸𝑅𝐷𝑀𝐸𝑀𝑆 =
1

√2
⋅

√4𝑘𝐵𝑇𝑏𝑠

2𝑚𝑠𝑥𝑑𝑎𝜔𝑑𝑎
⋅ (

180

𝜋
) =

√2 ⋅
4𝑘𝐵𝑇𝜔𝑠𝑚𝑠

𝑄𝑠

2𝑚𝑠𝑥𝑑𝑎𝜔𝑑𝑎
⋅ (

180

𝜋
) = 699

μdps

√𝐻𝑧
 

 

where the factor 2 in the square root accounts for the two halves, and the factor 180/𝜋 is needed to 

convert to dps. The electronic noise should be thus equal to such value. The noise can be computed at the 

output of the sense TIAs and then referred to NERD using the full sensitivity to voltage output: 

𝑆𝑉 =
𝑑𝑉

𝑑Ω
=

𝑑𝑦

𝑑Ω
⋅

𝑑𝐶

𝑑𝑦
⋅

𝑑𝑉

𝑑𝐶
= 𝑆𝑦 ⋅

𝑑𝐶

𝑑𝑦
⋅

𝑑𝑉

𝑑𝐶
 

Where the differential parallel plate capacitance variation is: 

𝑑𝐶

𝑑𝑦
= 2

𝐶0

𝑔
= 2

𝑁𝑃𝑃

𝑔
𝐶01𝑃𝑃 

𝐶01𝑃𝑃 =
𝜖0𝐿𝑝𝑝ℎ

𝑔
= 14.75 𝑓𝐹 

And the capacitance to voltage sensitivity accounts for the factor two due to differential readout of the two 

half structures: 

𝑑𝑉

𝑑𝐶
= 2

𝑉𝑅𝑂𝑇

𝐶𝐹
 

No information is provided on the sense TIA feedback capacitance, however with reasonable assumptions 

the input referred op-amp voltage noise is independent on its value. Indeed: 

𝑁𝐸𝑅𝐷𝐸𝐿𝑁 =
√2𝑆𝑣𝑛 ⋅ (1 +

𝐶𝑃
𝐶𝐹

)

𝑆𝑉
≈

√2𝑆𝑣𝑛 ⋅ (
𝐶𝑃
𝐶𝐹

)

𝑆𝑦 ⋅ 2
𝑁𝑃𝑃

𝑔 𝐶01𝑃𝑃 ⋅ 2
𝑉𝑅𝑂𝑇

𝐶𝐹

=
√2𝑆𝑣𝑛

𝑆𝑦 ⋅ 2
𝑁𝑃𝑃

𝑔 𝐶01𝑃𝑃 ⋅ 2
𝑉𝑅𝑂𝑇

𝐶𝑃

 

Thus, the number of required parallel-plate cells is: 

𝑁𝐸𝑅𝐷𝐸𝐿𝑁 ≤ 𝑁𝐸𝑅𝐷𝑀𝐸𝑀𝑆     ⇒     𝑁𝑃𝑃 ≥
√𝑆𝑣𝑛

𝑆𝑦 ⋅ 2
𝐶01𝑃𝑃

𝑔 ⋅ 2
𝑉𝑅𝑂𝑇

𝐶𝑃
⋅ 𝑁𝐸𝑅𝐷𝑀𝐸𝑀𝑆

= 13.69    ⇒    𝑁𝑃𝑃 = 14 
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3) The relative sensitivity variation is equal to the relative variation of the drive motion amplitude: 

𝑆𝑦 =
𝑥𝑑𝑎

Δ𝜔𝑀𝑆
⇒

𝑑𝑆𝑦

𝑆𝑦
=

𝑑𝑥𝑑𝑎

𝑥𝑑𝑎
 

The drive displacement amplitude depends on the variation of the drive springs stiffness, the drive quality 

factor, and the TIA feedback capacitance. The first two contributions are reduced by the AGC loop gain, 

since these disturbances are due to a variation of the actuation efficiency which is compensated by the 

amplitude loop. The capacitance contribution, on the other hand, affects the displacement readout and 

cannot be compensated by the AGC. Following these considerations, the relative variation is: 

𝑑𝑥𝑑𝑎

𝑥𝑑𝑎
= (

𝑑𝑘

𝑘
+

𝑑𝑄

𝑄
) ⋅

1

1 + 𝐺𝑙𝑜𝑜𝑝𝐴𝐺𝐶
+

𝑑𝐶

𝑑𝑇
Δ𝑇 = (−60

𝑝𝑝𝑚

𝐾
Δ𝑇 −

Δ𝑇

2𝑇
) ⋅

1

1 + 𝐺𝑙𝑜𝑜𝑝𝐴𝐺𝐶
+ 40

𝑝𝑝𝑚

𝐾
Δ𝑇 

The TCA sensitivity is also affected by the capacitance variation, with opposite sign, thus cancelling out in 

the rate-to-voltage sensitivity: 

𝑑𝑆𝑉

𝑆𝑉
= (

𝑑𝑘

𝑘
+

𝑑𝑄

𝑄
) ⋅

1

1 + 𝐺𝑙𝑜𝑜𝑝𝐴𝐺𝐶
 

The variation evaluated at both ends of the temperature range results in: 

𝑑𝑆𝑦

𝑆𝑦
|

−40°𝐶

= +0.34% 

𝑑𝑆𝑦

𝑆𝑦

|
85°𝐶

= −0.31% 
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Question n. 3 

A camera for high dynamic range acquisitions needs to 

be optimized when capturing pictures at 0.5 ms 

integration time, for scientific applications. 

The camera is characterized by a 4T topology. Before 

implementing correlated double sampling (CDS) and 

before spatial noise (FPN) calibration, the camera 

shows the Photon Transfer Curve (PTC) in the figure. 

(i) properly size the kTC noise reduction factor that needs to be achieved through the CDS operation; 

(ii) properly size the PRNU compensation factor that needs to be reached through the FPN calibration; 

(iii) on the same (or redrawn) quoted graph, plot the new PTC, and calculate the initial and final dynamic 

range and the initial and final maximum SNR. 
Physical Constants 

εSi = 8.85 10-12∙11.7 F/m  

kb = 1.38 10-23 J/K; 

q = 1.6 10-19 C;  
 

 
 

(i) 

The implementation of the CDS operation always leave a residual effect of kTC noise, due ti process spreads. 

It is important that this residual noise is brought down to the level of other noise sources (or even to lower 

levels), in such a way that it does not worsen the overall noise performance. 

In this case, we observe that at low signal values (flat region of the PTC) the dark current contributions and 

quantization contributions are given by: 

Table of parameters 

Operating temperature 𝑇 280 𝐾 

Integration time 𝑡𝑖𝑛𝑡 0.5 𝑚𝑠 

Dark current 𝑖𝑑  0.05 𝑓𝐴 

Floating diffusion capacitance 𝐶𝑖𝑛𝑡 0.5 𝑓𝐹 

Circuit biasing voltage 𝑉𝐷𝐷 20 𝑉 

ADC number of bits 𝑁𝑏𝑖𝑡 14 



 

𝜎𝑖𝑑
=

√𝑞 ⋅ 𝑖𝑑 ⋅ 𝑡𝑖𝑛𝑡

𝑞
= 0.4 𝑒𝑟𝑚𝑠

−  

𝜎𝑞𝑢𝑎𝑛𝑡 =
𝑉𝐷𝐷

√12 2𝑁𝑏𝑖𝑡

𝐶𝑖𝑛𝑡

𝑞
= 1.1 𝑒𝑟𝑚𝑠

−  

 

While effectively kTC noise remains the dominant contribution: 

𝜎𝑘𝑇𝐶 =
√𝑘𝑇𝐶𝑖𝑛𝑡

𝑞
= 8.7 𝑒𝑟𝑚𝑠

−  

 

which corresponds to the value which we read on the graph on the flat region. A well dimensioned system 

will require kTC noise to equal (or a bit below) the above-mentioned sources. Setting it to too large values 

would imply that the kTC noise reduction factor is excessively overstressed. 

We thus easily find: 

𝑅𝑘𝑇𝐶 =
8.7 𝑒𝑟𝑚𝑠

−

√(0.4 𝑒𝑟𝑚𝑠
− )2 + (1.1 𝑒𝑟𝑚𝑠

− )2
= 7.4 

 

Note that we assumed DSNU to be negligible as we had no information on this contribution. 

 

(ii) 

Similarly, in the calibration operation of fixed pattern noise, the aim will be to minimize PRNU effects down 

to a value that equals photon shot noise for the maximum input signal. From the graph, we can draw the 

curve with a slope of ½ that corresponds to photon shot noise: 

 
 

We note that at the maximum signal, photon shot noise corresponds to about 250 electrons, while PRNU 

noise equals about 650 electrons. 

The required compensation factor is thus: 

𝐶𝑜𝑚𝑝𝑃𝑅𝑁𝑈 =
650 𝑒𝑟𝑚𝑠

−

250 𝑒𝑟𝑚𝑠
− = 2.5 

 

(iii) 

We can now draw the new graph without even doing calculations, but just relying on what we sized so far. 

In particular, we know that at low signal levels we will have roughly a factor √2 the value of the quadratic 
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sum of dark current shot noise and quantization noise (indeed, we sized kTC noise reduction factor so to have 

kTC noise equal to that quadratic sum). This yields 1.6 electrons rms. 

 

Conversely, at the highest bound of the graph we will have √2 the value of photon shot noise, which 

corresponds to about 350 electrons rms. The graph appears thus as below. 

 
Through the markers, we have highlighted the values of noise for the points corresponding to the maximum 

signal (
𝑉𝐷𝐷𝐶𝑖𝑛𝑡

𝑞
≈ 62000 electrons). Additionally, we have highlighted the point in the graph where signal 

equals noise (SNR = 1). 

 

We can thus easily find the DR and maximum SNR for the two conditions: 

 

𝑆𝑁𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙max = 20 log10

62000

650
= 39.5 𝑑𝐵 

 

𝑆𝑁𝑅𝑓𝑖𝑛𝑎𝑙max = 20 log10

62000

350
= 44.9 𝑑𝐵 

 

𝐷𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 20 log10

62000

9.3
= 76.5 𝑑𝐵 

 

𝐷𝑅𝑓𝑖𝑛𝑎𝑙 = 20 log10

62000

2.2
= 88.9 𝑑𝐵 

 

 

 

  



 

 


