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Question n. 1 

A parallel-plate resonator like the one depicted below is used for MEMS-based real-time-clock applications. 

Derive and graph its electrical equivalent model, clearly defining the analytical expression of the model 

components. Describe and motivate under which conditions of pressure and motion this solution is 

preferable against other types of resonators. Discuss the effects of the slit holes designed on the bending 

structure (as highlighted in the zoom).  

 

The shown architecture is a three-port resonator based on parallel-plate capacitive actuation and parallel-

plate sensing of motion. Each of the two long, lateral suspended beams is deflected  by the actuator as a 

consequence of the electrostatic force applied due to the voltage difference between actuator and rotor. 

The relationship between voltage and force can be found from: 

𝐹𝑒𝑙(𝑠) =
[𝑉𝑟𝑜𝑡 − 𝑉𝐴(𝑠)]

2

2

𝑑𝐶𝐴
𝑑𝑥

 

For a small-signal approximation, where 𝑉𝐴(𝑡) = 𝑉𝐴0 + vasin(𝜔0𝑡) and 𝑣𝑎 ≪ 𝑉𝐴0, and for small 

displacements 𝑥 ≪ 𝑔 (where 𝑔 is the gap between the parallel plates), one can solve the expression above 

and found the transduction factor for the actuation port as: 

𝐹𝑒𝑙(𝑠) =
2𝑉𝑟𝑜𝑡𝑣𝑎(𝑠)

2

𝜖0𝐴

𝑔2
= 𝑉𝑟𝑜𝑡𝑣𝑎(𝑠)

𝜖0𝐴

𝑔2
= 𝜂𝐴𝑣𝑎(𝑠)          →           𝜂𝐴 = 𝑉𝑟𝑜𝑡

𝜖0𝐴

𝑔2
 

 

The so obtained force is applied to a suspended mass (a deflecting beam, in this case), which can be described 

by its spring-mass-damper law (with coefficients 𝑘, 𝑚 and 𝑏, respectively) to find the relationship between 

applied force and displacement 𝑋(𝑠) in the Laplace domain: 

𝑋(𝑠) = 𝐹𝑒𝑙(𝑠)
1

𝑚𝑠2 + 𝑏𝑠 + 𝑘
 

The final step is to convert this motion back into an electrical signal. This can be obtained by calculating the 

motional current at the output of the resonator sense port, kept to (virtual) ground: 

𝑖𝑚(𝑡) = 𝑉𝑟𝑜𝑡
𝑑𝐶𝑆
𝑑𝑡

= 𝑉𝑟𝑜𝑡
𝑑𝐶𝑆
𝑑𝑥

𝑑𝑥

𝑑𝑡
 → 𝑖𝑚(𝑠) = 𝑉𝑟𝑜𝑡

𝑑𝐶𝑆
𝑑𝑥

𝑠𝑋(𝑠) = 𝑉𝑟𝑜𝑡
𝜖0𝐴

𝑔2
𝑠𝑋(𝑠) = 𝑠𝜂𝑆𝑋(𝑠) → 𝜂𝑆 = 𝑉𝑟𝑜𝑡

𝜖0𝐴

𝑔2
 

The small displacement approximation is used again. Note also how the transduction factor of the sense port, 

for a symmetric resonator, equals the one at the actuation port so that we can name them 𝜂 = 𝜂𝐴 = 𝜂𝑆. 



 

Combining the three equations above, one can find the relationship between applied voltage and output 

current, which thus represents the electrical admittance of the resonator: 

𝑖𝑚(𝑠)

𝑣𝑎(𝑠)
=

𝑠 𝜂2

𝑚𝑠2 + 𝑏𝑠 + 𝑘
=

1

𝑚
𝜂2
𝑠 +

𝑏
𝜂2
+

𝑘
𝜂2𝑠

=
1

𝐿𝑒𝑞𝑠 + 𝑅𝑒𝑞 +
1
𝐶𝑒𝑞𝑠

 

The equations show how this three-port 

resonator can be modeled by a two-port series 

of three electrical equivalent component. Note however that the third 

port is still present, as the voltage applied to the rotor affects the value 

of the transduction factor and thus of the electrical parameters. A sample 

graph of this admittance is reported aside. In particular, note how at the 

resonance frequency the model collapse into a resistance, with 

maximum admittance (minimum resistive losses) and no phase shift. 

 

The model appears thus very similar to a comb-based resonator, with the difference essentially appearing 

only in (i) the expression of 𝜂 and (ii) the need for a small displacement approximation. This already tells us 

that this resonator will be useful for applications where motion is small. This is not the case of drive 

resonators for gyroscopes, which indeed require comb-based actuation and large motion. It is instead the 

case of high-frequency applications of oscillators, e.g. for time keeping or synchronization. The large stiffness 

at such frequencies implies small displacement and, as a consequence, require parallel-plate sensing which 

gives a higher transduction factor. To compensate for damping introduced by the parallel plates, such 

applications need very low operation pressure (e.g. in the order of 100 µbar or lower). 

 

When pressure is so low, fluid damping (i.e. damping 

induced by gas particles) is made negligible and other 

damping sources arise, like thermoelastic damping. 

This phenomenon, due to bending and compression of 

structural parts, which induce local temperature 

changes (heat of the compressed part, cooling of the 

stretched part as in the figure) induces, in turn, heat 

flow and dissipation (damping) inside the resonator 

structure. The presence of this slit holes blocks the heat flow inside the beams, thus reducing also this 

damping contribution and enabling very large quality factors, even with parallel-plate architectures.    
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Question n. 2 

An imaging sensor based on a pinned photodiode 

process, without correlated double sampling, is 

characterized by the photon transfer curves (PTC) 

shown aside. In particular, the blue solid curve is 

captured at a temperature T1 = 250 K, and the orange 

dashed line is captured at T2 = 350 K. 

Considering the other parameters given in the table: 

(i) calculate the sensor quantum efficiency and calculate the % PRNU; 
 

(ii) estimate the value of the capacitance at the integration node; 
 

(iii) estimate the number of bits used by the imaging sensor ADC. 
Physical Constants 

kb = 1.38 10-23 J/K; 

q = 1.6 10-19 C; 

 

(i) 

The calculation of the quantum efficiency can be done by considering the central part of the PTC (slope ½), 

where photon shot noise dominates. Indeed, in this region we know that the following relationship gives the 

value of noise 𝜎𝑒𝑙 in rms electrons: 

𝜎𝑒𝑙 =
√𝑞𝑖𝑝ℎ𝑡𝑖𝑛𝑡

𝑞
 

Parameter [unit] Value 

Total number of active pixels [-] 3000 ∙ 4000 

Active pixel sensor size [mm2] 3 ∙ 4 

Process dark current density [fA/µm2] 0.1 

Sensor supply voltage [V] 3 



 

As the photocurrent is just equal to the number of signal electrons 𝑁𝑒𝑙, multiplied by the elementary 

charge, and captured per unit integration time 𝑡𝑖𝑛𝑡, we can as well write that: 

𝜎𝑒𝑙 =
√𝑞

𝑞𝑁𝑒𝑙
𝑡𝑖𝑛𝑡

𝑡𝑖𝑛𝑡

𝑞
 

Finally, as the number of captured electrons per unit time is related, by definition, to the number of input 

photons per unit time through the quantum efficiency 𝜂, we can write: 

𝜎𝑒𝑙 =

√𝑞
𝑞𝑁𝑝ℎ𝜂
𝑡𝑖𝑛𝑡

𝑡𝑖𝑛𝑡

𝑞
=
𝑞√𝑁𝑝ℎ𝜂

𝑞
= √𝑁𝑝ℎ𝜂    →    𝜂 =

𝜎𝑒𝑙
2

𝑁𝑝ℎ
 

By choosing a suitable point in the curve, in the central part of the ½ slope region, we give a good estimate 

of 𝜂: with 𝜎𝑒𝑙 = 60 and 𝑁𝑝ℎ = 5000 we find a quantum efficiency of 0.72. Similar values are obtained also 

by choosing other pairs of (𝜎𝑒𝑙 , 𝑁𝑝ℎ) in this region. 

The PRNU is instead determined by the portion of the curve with slope 1. In this region we know that: 

𝜎𝑒𝑙 =
𝑃𝑅𝑁𝑈%𝑖𝑝ℎ𝑡𝑖𝑛𝑡

𝑞
=
𝑃𝑅𝑁𝑈%

𝑞𝑁𝑝ℎ𝜂
𝑡𝑖𝑛𝑡

𝑡𝑖𝑛𝑡

𝑞
= 𝑃𝑅𝑁𝑈%𝑁𝑝ℎ𝜂 →    𝑃𝑅𝑁𝑈% =

𝜎𝑒𝑙
𝑁𝑝ℎ𝜂 

 

By choosing the saturation point of the curve, with 𝜎𝑒𝑙 = 10
4 and 𝑁𝑝ℎ = 7 ⋅ 10

6 we find 𝑃𝑅𝑁𝑈% = 0.2 %. 

 

(ii) 

We observe the presence of two curves at different temperatures, and we know that kTC noise depends on 

both temperature and the capacitance at the integration node. This suggests us that the following system 

can be written, looking at the 0-slope portion of the PTC (the zoomed part of the image): 

{
 

 
𝑘𝐵𝑇2𝐶

𝑞2
+ (𝜎𝑞𝑢𝑎𝑛𝑡

2 + 𝜎𝑑𝑎𝑟𝑘
2 + 𝜎𝐷𝑆𝑁𝑈

2 ) = 𝜎𝑒𝑙,𝑇2
2

𝑘𝐵𝑇1𝐶

𝑞2
+ (𝜎𝑞𝑢𝑎𝑛𝑡

2 + 𝜎𝑑𝑎𝑟𝑘
2 + 𝜎𝐷𝑆𝑁𝑈

2 ) = 𝜎𝑒𝑙,𝑇1
2

             {
𝛼𝑇2 + 𝛽 = 11.1

2

𝛼𝑇1 + 𝛽 = 9.9
2  

where the simplified version has assumed 𝛼=
𝑘𝐵𝐶

𝑞2
 and 𝛽 as the sum of all signal-independent noise sources 

except for kTC noise. The solution of this simple system yields 𝛼 = 0.25 and 𝛽 = 35.5. By solving for the 

value of the capacitance at the integration node, we find: 

𝛼 =
𝑘𝐵𝐶

𝑞2
= 0.25  →    𝐶 = 0.25 ⋅

𝑞2

𝑘𝐵
= 0.46 𝑓𝐹 

with the corresponding kTC noise being in the order of 7-9 electrons depending on the temperature value. 

(iii) 

We now also know the summed value of signal-independent noise sources (excluding kTC noise), which is: 

𝛽 = (𝜎𝑞𝑢𝑎𝑛𝑡
2 + 𝜎𝑑𝑎𝑟𝑘

2 + 𝜎𝐷𝑆𝑁𝑈
2 ) = 35.5 →    √(𝜎𝑞𝑢𝑎𝑛𝑡

2 + 𝜎𝑑𝑎𝑟𝑘
2 + 𝜎𝐷𝑆𝑁𝑈

2 ) = 6 𝑒𝑟𝑚𝑠
−  
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As the process is based on pinned photodiodes, we assume that the dark current is low enough (and the 

DSNU as well) to make its noise contribution negligible. We will later verify this hypothesis. In this situation, 

(almost) all the 6 electrons will be given by quantization noise, which allows to easily find the number of 

bits of the sensor ADC as: 

𝜎𝑒𝑙 =

𝑉𝐷𝐷
2𝑛𝑏𝑖𝑡√12

𝐶

𝑞
     →     𝑛𝑏𝑖𝑡 = log2 (

𝑉𝐷𝐷𝐶

𝑞 √12 𝜎𝑒𝑙
) = 8.69     →     𝑛𝑏𝑖𝑡 = 9 

For the verification of the hypothesis, we can roughly estimate the pixel area from the total number of 

pixels and the overall sensor area as: 

𝐴𝑝𝑖𝑥 =
𝐴𝑠𝑒𝑛𝑠𝑜𝑟
𝑁𝑝𝑖𝑥𝑒𝑙

= (1 𝜇𝑚)2 

We have no information on microlenses, fill factor etc… but we just take the worst case for which the dark 

current density is collected over the entire pixel area, giving thus 𝑖𝑑 = 0.1 𝑓𝐴. For a typical integration time 

in the range of 0.5 ms to 5 ms, the associated shor noise contribution remains in the range of 0.55 to 1.5 

electrons rms, confirming that shot noise (and reasonably also DSNU) are effectively negligible. 

 

We conclude with a comment: quantization noise is well dimensioned. Indeed, its value is comparable or 

even slightly lower than the dominant noise source, which is in this case the reset noise. This agrees with 

the fact that CDS is not implemented for this sensor, as stated in the exercise text. 
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Question n. 3 

A z-axis gyroscope, with differential parallel plate 

sensing, designed for motion tracking 

application, features the parameters reported in 

the table. You are asked to: 

(i) find the sensitivity (in [m/dps]) and the 

linearity error at the full-scale-range; 

 

(ii) find the thermomechanical and the 

electronic (of amplifiers and feedback 

resistors) contributions to the input-

referred noise density, in [dps/√Hz] (you 

are supposed to properly size the 

feedback resistor of the amplifiers); 

 

(iii) for a given production lot, the statistic angle error α between the drive frame motion and the nominal 

drive motion direction is given by a mean value of 10-4 rad and a statistical deviation (3σ) of 10-6 rad. 

Accurately draw the compensation technique (at electromechanical level) for the quadrature error. 

Compute the required voltage difference for the tuning plates in order to compensate for the mean 

quadrature error. Compute the residual maximum offset (after calibration) in dps. 
Physical Constants 

ε0 = 8.85 10-12 F/m 

kB = 1.38 10-23 J/K 

T = 300 K 

 

(i) 

The sensitivity in terms of displacement per unit angular rate [m/dps] is computed through its definition: 

𝑆𝑦 =
𝑥𝑑
Δ𝜔

⋅
𝜋

180
= 33.3 

pm

dps
 

We can thus compute the maximum displacement of the sense frame, i.e. at the FSR: 

𝑦𝑚𝑎𝑥 = 𝑆𝑦 ⋅ 𝐹𝑆𝑅 = 150 nm 

Using the obtained value, it is possible to compute the maximum linearity error for the differential parallel 

plate topology, given by the formula: 

𝜖% = (
𝑦𝑚𝑎𝑥
𝑔
)
2

⋅ 100 = 1%. 

 

(ii) 

Let us compute the intrinsic Noise Equivalent Rate Density NERDi (the factor 2 at the denominator accounts 

for the two-mass structure: not an error if you missed it): 

𝑁𝐸𝑅𝐷𝑖 = √
𝑘𝐵𝑇 𝑏𝑠
2

1

𝑥𝑑𝜔𝑑𝑚𝑠

180

𝜋
= √

𝑘𝐵𝑇

2𝑄𝑠𝑚𝑠𝜔𝑑

1

𝑥𝑑

180

𝜋
= 3.2 

𝑚𝑑𝑝𝑠

√𝐻𝑧
. 

Parameter [unit] Value 

Process height [μm] 25 

Process gap [μm] 1.5 

Drive displacement [μm] 6 

Amplifier input noise [nV/√Hz] 20 

Parasitic capacitance [pF] 4 

Rotor voltage [VDC,rot] 15 

Frequency split [Hz] 500 

Drive frequency [kHz] 25 

Sense mass (half structure) [nKg] 4 

Target full-scale range [dps] ±4500 

Sense Q-factor 800 

Sense capacitance (all device, single-ended) [fF] 200 

Supply voltage [V] 0 – 3 

N. of quadrature compensation cells 14 

Drive mode angle α vs nominal direction [rad] 10-4 ± 10-6 



 

The Noise Equivalent Rate Density due to electronics, NERDe, is computed as follows: 

𝑁𝐸𝑅𝐷𝑒 = √2

√𝑆𝑣 (1 +
𝐶𝑝
𝐶𝑓
)
2

+
4𝑘𝐵𝑇
𝑅𝑓

(
1

𝜔𝑑𝐶𝑓 
)
2

(
𝑉𝑑𝑑
2 𝐹𝑆𝑅

 )
 

Where the factor √2 takes into account the two uncorrelated OPAMP and feedback resistor noises, 𝐶𝑝 is 

the parasitic capacitance, and the factor 2 at the denominator in the last term is due to the single rail of the 

supply which goes from 0 V to 3 V. The feedback capacitance 𝐶𝑓 should be dimensioned in order to 

maximize the sensitivity, achieving a rail to rail signal at the FSR1. 

𝐶𝑓 =  2 ⋅
𝑉𝐷𝐶,𝑟𝑜𝑡
𝑉𝑑𝑑
2

⋅
𝐶0
𝑔
⋅ 𝑦𝑚𝑎𝑥 = 400 𝑓𝐹 

where 𝐶0 represents the sense capacitance. With 𝐶𝑓, we can compute the NERDe, getting 1.3 mdps/√Hz. 

(iii) 

The electromechanical compensation strategy is the adoption of a set of four 

parallel plates arranged and biased as shown in the figure.  

The resulting electrostatic force in the y direction is given by the formula: 

 |𝐹𝑄𝐶| =
4𝜖0ℎ

𝑔2
 𝑉𝐷𝐶,𝑟𝑜𝑡  Δ𝑉 𝑥𝑑 . 

 

First of all we should compute the sense stiffness projected along the drive 

direction: 

𝑘𝑑𝑠 ≃ 𝛼̅ 𝑘𝑠 = 𝛼̅ 𝑚𝑠 (2𝜋(𝑓𝑑 + 𝑓𝑠𝑝𝑙𝑖𝑡))
2
= 0.001

𝑁

𝑚
. 

𝛼̅ is the mean value of the angle error between the sense and the drive frame. 

From that, we can compute the voltage difference to be applied to the compensation electrodes in order to 

null the quadrature error: 

Δ𝑉 =
𝑘𝑑𝑠𝑥𝑑  𝑔

2

4𝜖0ℎ 𝑉𝐷𝐶,𝑟𝑜𝑡  𝑥𝑑 𝑁𝑐𝑐
= 1.24 𝑉 

The residual maximum quadrature error can be computed as: 

𝐵𝑞 =
𝑘𝑑𝑠,3𝜎
2 𝑚𝑠𝜔𝑑

180

𝜋
=  
𝛼3𝜎𝑚𝑠[2𝜋(𝑓𝑑 + 𝑓𝑠𝑝𝑙𝑖𝑡)]

2

2 𝑚𝑠𝜔𝑑

180

𝜋
= 46.8 𝑑𝑝𝑠 

 
 

  

 
1 We are neglecting the presence of the quadrature signal which in principle might saturate the output of the charge 
amplifier.  
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