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Question n. 1 

You collaborate with a company that fabricates magnetic sensors 

based on a non-MEMS technology. Their products have the 

specifications given in the Table. You have to convince them that it is 

worth going towards a MEMS-based magnetometer.  

Start with an overlook of acceleration-rejecting structures, then 

comment on the bandwidth requirements, then on noise constraints 

and on architectures that improve noise density. Finally comment on consumption and achievable FSR. Use 

as much as possible formulas, numerical examples and sketches to assist your discussion and be convincing. 

 

MEMS magnetometers based on the Lorentz 

force principle could be an attractive solution to 

improve the performance of existing magnetic 

sensors based on magnetic materials. In their 

differential tuning-fork-based configuration, like 

those shown in the figures for in-plane and out-

of-plane sensing, they can reject accelerations 

(which are seen as a common mode) as the sign 

of the Lorentz current will be opposite on the 

two branches of the sensor. There are, however, 

several considerations to draw before 

concluding that MEMS magnetometer 

overcome the performance in the table. 

First, to guarantee a sufficiently large bandwidth at low noise density, one should exploit off-resonance 

operation, i.e. the current injected into the sensor should be at a frequency 𝑓𝑑 which has an offset Δ𝑓 from 

the sensor resonance 𝑓0 of about three times the desired bandwidth. In this case, this value can be in the 

order of 150 Hz, with 𝑓0 typically larger than 20 kHz to avoid acoustic disturbances (even higher frequencies 

will better reject undesired displacements caused by accelerations). With this numbers, there is still a residual 

gain (quantified as an effective factor 𝑄𝑒𝑓𝑓 = 𝑓0/2Δ𝑓 = 67) and the scale factor will be: 

𝑆𝐹 =
Δ𝑉𝑜𝑢𝑡

𝐵
= 𝑖 ⋅ 𝐿

𝑄𝑒𝑓𝑓

2 𝑘

2 𝐶0

𝑔

𝑉𝐵𝐼𝐴𝑆

𝐶𝐹
 

Not only off-resonance operation guarantees such a large bandwidth, but it also enables to decrease the 

pressure, so to lower the intrinsic thermomechanical noise (by decreasing the damping coefficient) and, in 

general, enhances the scale-factor stability of the sensor against temperature variations. As a numerical 

example, we know that the NEMD is given by: 

𝑁𝐸𝑀𝐷 =
√4𝑘𝐵𝑇𝑏

𝑖 ⋅ 𝐿 /2
=

4

𝑖 ⋅ 𝐿
√𝑘𝐵𝑇𝑏 =

4

𝑖 ⋅ 𝐿
√

𝑘𝐵𝑇𝜔0𝑚

𝑄
 

Assuming a current of e.g. 300 µA, 1-mm spring length and a Q factor of e.g. 3000 (at 20 kHz and 2 nkg mass), 

we get a NEMD of about 330 nT/√Hz. 

Over the desired bandwidth this gives an integrated noise of about 2.5 µTrms which is not compatible with 

the target specifications. A solution could be to further reduce the pressure, but this may be complex from a 

process point of view. Additionally, we should consider electronics noise. With a typical circuit based on a 

Bosch BMM150 

Parameter Value 

VDD 3 V 

Magnetic Field Range ±1.3 mT 

Supply current (3 axes) 800 µA 

Rms noise 0.3 µT 

Bandwidth 50 Hz 

Linearity error 1%FSR 

Max Mechanical shock 10000 g 

Temperature range -40°C +85°C 

 



 

differential charge amplifier configuration (see the figure), and neglecting feedback resistance noise, 

electronic noise will be given by: 

√𝑆𝑉𝑛,𝐵 =

√2 𝑆𝑉𝑛 (1 +
𝐶𝑃
𝐶𝐹

)
2

𝑆𝐹
=

√2 𝑆𝑉𝑛 (1 +
𝐶𝑃
𝐶𝐹

)
2

𝑖 ⋅ 𝐿
𝑄𝑒𝑓𝑓

2 𝑘
2 𝐶0

𝑔
𝑉𝐵𝐼𝐴𝑆

𝐶𝐹

≈
√2 𝑆𝑉𝑛 𝐶𝑃

𝑖 ⋅ 𝐿
𝑄𝑒𝑓𝑓

𝑘
𝐶0
𝑔

𝑉𝐵𝐼𝐴𝑆

 

Typical numbers (10 nV/√Hz amplifier noise, 5 pF parasitic, 250 fF 𝐶0, 1 µm gap, 
𝑉𝐷𝐷

2
 bias and other numbers 

as above) lead to 300 nT/√Hz, similarly to the NEMD value – but this noise will not decrease with pressure. 

                                          

It is thus evident that we need to switch to a sensor architecture that can increase noise from all points of 

view: the only way is thus to boost the Lorentz force without increasing the current, which can be obtained 

by multi-loop Lorentz magnetometer architectures, as shown in the figure. A number of loops 𝑁𝑙𝑜𝑜𝑝 e.g. of 

10 directly boosts the sensitivity, correspondingly lowering both NEMD and electronic noise. 

Both the obtained noise values will thus lie in the 30 nT/√Hz range which, summed and integrated over the 

bandwidth, give a 300 nTrms noise, which is compatible with the requirements. 

Note that the used Lorentz current (300 µA, which can recirculate through the three sensors) leaves much 

room to bias the electronics to get the desired noise value, and to bias the oscillator circuit that provides the 

reference drive frequency for the Lorentz current. Overall consumption can be lower than the specifications. 

With the given parameters, a 1% nonlinearity error will be reached at 10% of the gap (100 nm): this value is, 

in turn, obtained for a field such that: 

𝐵𝑚𝑎𝑥𝑖𝐿𝑁𝑙𝑜𝑜𝑝𝑄𝑒𝑓𝑓

2𝑘
=

𝐵𝑚𝑎𝑥𝑖𝐿𝑁𝑙𝑜𝑜𝑝𝑄𝑒𝑓𝑓

2 (𝜔𝑑)2𝑚
= 100 𝑛𝑚 →   𝐵𝑚𝑎𝑥 = 31 𝑚𝑇 

which is, once more, far beyond the specifications. 

Additional final comments can be given to further improve potentialities of magnetometers: 

- the oscillation drive reference can be provided by another MEMS (a resonator): this will improve 

stability under temperature changes, because the changes with T of 𝑓0 and 𝑓𝑑 will be correlated; 

- monolithic implementations of a 3-axis sensor are possible (this saves a lot of Silicon area); 

- further optimization of current partitioning between the sensor and the electronics can be done by 

writing the amplifier noise as a function of the bias current, and accounting for the oscillator current.  
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Question n. 2 

You are doing the reverse engineering of an image sensor. The only things you know initially are the bias 

voltage (VDD = 4 V) and the number of bits of the ADC (Nbit = 14), and you are given the photon transfer curve 

in the figure, for three different integration times. 

(i) calculate the maximum sensor dynamic range; 

(ii) calculate quantization noise, in units of electrons rms; 

(iii) calculate the DSNU and the PRNU percentage noise contributions. Please state all the assumptions that 

you make for your calculations; 

(iv) how can you understand that this is a 4T topology? Calculate the reset noise rejection factor. 

 

Physical Constants 

q = 1.6 10-19 C; 

T = 300 K; 

kb = 1.38 10-23 J/K; 

0 = 8.85 10-12 F/m; 

Si = 11.7* 0; 

 

1. 

The maximum sensor dynamic range is easily found by looking at the curve with minimum integration time 

and looking for two points on the x-axis: the signal charge corresponding to saturation (we can read 40000 

electrons) and the signal charge corresponding to SNR = 1 (we read about 3.5 electrons rms). The two points 

are indicated by circles. The ratio of these two quantities gives the maximum DR: 

𝐷𝑅𝑚𝑎𝑥 = 20 log10 (
40000

2.5
) = 81.2 𝑑𝐵 

 

 

DR 



 

2. 

As we are given the supply voltage and the number of bits, we can easily calculate the LSB in units of V: 

𝐿𝑆𝐵𝑉 =
𝑉𝐷𝐷

2𝑁𝑏𝑖𝑡  
=

4𝑉

214
= 244 𝜇𝑉 

 

To pass into units of charge, we need to know the overall capacitance 𝐶𝑖𝑛𝑡 onto which the charge is 

integrated. This can be found by looking at the saturation point, where we know that 

𝑄𝑚𝑎𝑥 = Δ𝑉𝑚𝑎𝑥 ⋅ 𝐶𝑖𝑛𝑡 ≈ 𝑉𝐷𝐷 ⋅ 𝐶𝑖𝑛𝑡 

 

(where we have approximated the total possible voltage sweep with the entire voltage supply 𝑉𝐷𝐷). We thus 

find the integration capacitance by inverting the formula above: 

𝐶𝑖𝑛𝑡 =
𝑄𝑚𝑎𝑥

𝑉𝐷𝐷
=

40000 𝑞

4 𝑉
= 1.6 𝑓𝐹 

 

At this point we can find quantization noise as: 

𝜎𝑞𝑢𝑎𝑛𝑡,𝑞 =
𝑉𝐷𝐷

2𝑁𝑏𝑖𝑡√12
𝐶𝑖𝑛𝑡 =

𝐿𝑆𝐵𝑉

√12
𝐶𝑖𝑛𝑡 =

244 𝜇𝑉

√12
1.6 𝑓𝐹 =  1.12 10−19 𝐶 = 0.7 𝑒𝑟𝑚𝑠 

 

This indicates that quantization noise, a signal-independent contribution, is negligible with respect to other 

signal-independent contributions which give 3 electrons rms even at the shortest integration time. 

 

 

3. 

Let us start with DSNU. Its expression in terms of charge is given by: 

𝜎𝐷𝑆𝑁𝑈,𝑞 =
𝑖𝑑𝑡𝑖𝑛𝑡𝜎𝐷𝑆𝑁𝑈,%

𝑞
 

 

which indicates that we have two unknowns, the dark current 𝑖𝑑 and the percentage DSNU itself, 𝜎𝐷𝑆𝑁𝑈,%, 

which is what we need to find. We can thus make a few hypotheses which will be later verified. 

 

The hypotheses are based on the fact that the dark current shot noise goes with the square root of 𝑡𝑖𝑛𝑡, while 

the DSNU goes linear with 𝑡𝑖𝑛𝑡. As a consequence, we expect that: 

- at low integration times, signal-independent noise contributions will be dominated by those terms 

which are independent of the integration time itself (e.g. reset noise); 

- at intermediate integration times, it might be that dark current shot noise will become relevant; 

- at long integration times, DSNU should definitely dominate over other terms. 
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From the curve at the lowest integration time, we thus assume reset noise to weigh about 3 electrons rms. 

We then look at the curve shown for intermediate integration times and assume that in its flat region dark 

current shot noise dominates over DSNU: 

(8.5 𝑒𝑟𝑚𝑠)2 =
𝑞𝑖𝑑𝑡𝑖𝑛𝑡

𝑞2
+ (3 𝑒𝑟𝑚𝑠)2     →    𝑖𝑑 = 𝑞

(8.5 𝑒𝑟𝑚𝑠)2 − (3 𝑒𝑟𝑚𝑠)2

7 𝑚𝑠
= 1.45 𝑓𝐴 

 

With this value, and assuming that DSNU dominates for the longest integration time, we can find the 

percentage DSNU as: 

𝜎𝐷𝑆𝑁𝑈,% =
220𝑞

𝑖𝑑  𝑡𝑖𝑛𝑡
=

220𝑞

1.45 𝑓𝐴   490 𝑚𝑠
= 0.05 = 5% 

 

As a verification, we recalculate dark shot noise and DSNU noise at all the integration times and check if our 

hypotheses were correct: 

- at 0.1 ms: 

𝜎𝑑𝑎𝑟𝑘,𝑞 =
√𝑞𝑖𝑑𝑡𝑖𝑛𝑡

𝑞
= 0.9 𝑒𝑟𝑚𝑠  𝜎𝐷𝑆𝑁𝑈,𝑞 =

𝑖𝑑𝑡𝑖𝑛𝑡𝜎𝐷𝑆𝑁𝑈,%

𝑞
= 0.04 𝑒𝑟𝑚𝑠 

- at 7 ms: 

𝜎𝑑𝑎𝑟𝑘,𝑞 =
√𝑞𝑖𝑑𝑡𝑖𝑛𝑡

𝑞
= 8 𝑒𝑟𝑚𝑠  𝜎𝐷𝑆𝑁𝑈,𝑞 =

𝑖𝑑𝑡𝑖𝑛𝑡𝜎𝐷𝑆𝑁𝑈,%

𝑞
= 3 𝑒𝑟𝑚𝑠 

- at 490 ms: 

𝜎𝑑𝑎𝑟𝑘,𝑞 =
√𝑞𝑖𝑑𝑡𝑖𝑛𝑡

𝑞
= 66 𝑒𝑟𝑚𝑠  𝜎𝐷𝑆𝑁𝑈,𝑞 =

𝑖𝑑𝑡𝑖𝑛𝑡𝜎𝐷𝑆𝑁𝑈,%

𝑞
= 222 𝑒𝑟𝑚𝑠 

 

Considering that noise contributions compare each other quadratically, our hypotheses are verified: dark-

current related noise contributions are negligible at the shortest integration time, dark shot noise dominates 

at intermediate integration times (82>>32) and DSNU dominates at the longest integration time (2222>>662). 

Percentage DSNU is, in conclusions, of about 5%. 

 

(note: making these hypotheses has led to the solution avoiding the need of solving a system of two 

equations - DSNU and dark noise at two integration times - which could have been another way to solve this 

point). 

 

Finally, for PRNU we just look at the steepest part of the curve: with any of the techniques that can be used 

(e.g. looking at one point on that part of the curve, or taking a line tangent to that part of the curve with a 

+20 dB/dec slope, see the figure), we can evaluate the PRNU: 

𝜎𝑃𝑅𝑁𝑈,𝑞 =
𝑖𝑝ℎ𝑡𝑖𝑛𝑡𝜎𝑃𝑅𝑁𝑈%

𝑞
 →    𝜎𝑃𝑅𝑁𝑈%

= 𝑞
𝜎𝑃𝑅𝑁𝑈,𝑞

𝑖𝑝ℎ𝑡𝑖𝑛𝑡
=

1

70
= 1.4% 

 



 

4. 

The fact that this is a 4T topology is easily understood by looking at the kTC noise and comparing it to the kTC 

noise that would be obtained from the overall integration capacitance 𝐶𝑖𝑛𝑡 calculated at point 2 above: 

 

𝜎𝑘𝑇𝐶𝑖𝑛𝑡,𝑞 =
√𝑘𝐵𝑇𝐶𝑖𝑛𝑡

𝑞
= 16 𝑒𝑟𝑚𝑠 

 

while from the graph at the minimum integration time we have already evaluated a dominating kTC noise 

value of 3 electrons rms (with quantization noise and dark-related noises negligible). 

 

This means that kTC noise due to the overall integration capacitance is rejected by a factor about 5.5 in linear 

quantities (about 30 in power units). This is possible thanks to correlated double sampling, a technique that 

can be adopted only with 4T topologies. 

 

By the way, such a high DR (see point 1) can be effectively achieved only with 4T topologies and at large pixel 

areas. The sensor is probably belonging to a high-end semiprofessional camera. 
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Question n. 3 

The company you work for wants to finalize the 

design of a dual-mass yaw gyroscope and your 

boss wants you to take some final decisions on a 

few electro-mechanical and system-level 

parameters. The target values of the project are 

reported in the Table and an overview of the 

mechanical structure and the sense chain is given 

in the Figure. You are required to: 

(i) compute the maximum displacement in 

the sense direction per unit angular rate, 

compatible with your constraints;  

(ii) compute the required number of drive 

comb fingers (half structure), under the 

constraint of a 500-mV sinusoidal drive-

actuation voltage vda; 

(iii) compute the intrinsic noise equivalent 

rate density (intrinsic NERD). Then, find 

the minimum number of parallel-plate 

cells (in the half structure) so that the 

electronics noise contribution is lower 

than the intrinsic one. Finally, compute 

the total noise density; 

(iv) draw a quoted plot of the output voltage 

waveform 𝑣𝑜𝑢𝑡(𝑡) when a test input 

angular rate Ω(𝑡) = Ω𝑡 ⋅ sin(2𝜋𝑓𝛺𝑡) 

(parameter values in table) is applied to 

the sensor. 
Physical Constants 

ε0 = 8.85 10-12 F/m 

kB = 1.38 10-23 J/K 

T = 300 K 

1.  

We are dealing with a standard dual-mass mode-

split gyroscope with a capacitive differential 

read-out. Usually, the maximum displacement in 

the sense (y) direction is limited by either the 

saturation of the electronics or the maximum 

acceptable non-linearity of the parallel plate 

electrodes. In this case, we do not have enough 

data to check the saturation of the electronics 

and so we focus on the non-linearity 

requirement. We know that the maximum 

linearity error 𝜖 is given by: 

𝜖𝑙𝑖𝑛 = (
𝑦𝑚𝑎𝑥

𝑔
)

2

, 

Target linearity error εlin% 0.5%FSR 

Target FSR 2000 dps 

Process height h 20 µm 

Drive resonance fd 19.6 kHz 

Sense resonance fs (at Vrot=15 V) 20 kHz 

Process minimum gap g 1.5 µm 

Parallel plate length Lpp 200 µm 

Drive mass (½ structure) md 2 nkg 

Sense mass (½ structure) ms 8 nkg 

Drive Quality Factor Qd 15000 

Sense Quality Factor Qs 800 

Input referred quadrature error Bq 300 dps 

Rotor voltage Vrot 15 V 

AC drive voltage vda 500 mV 

Feedback capacitance CF 200 fF 

Feedback resistance RF 400 MΩ 

INA gain GINA 1 

Multiplier gain Gmux 2 V-1 

Amplifier voltage noise SnV (8 nV/√Hz)2 

Parasitic capacitance CP 2 pF 

Test signal input AC rate Ωt 100 dps 

Test signal input frequency fΩ 10 Hz 



 

Where the power of two is due to the differential read-out. Inverting that formula, we obtain: 

𝑦𝑚𝑎𝑥 = 𝑔𝑝𝑝√𝜖𝑙𝑖𝑛 = 1.5 μm × √0.005 ≈ 106 nm. 

2. 

With all other electro-mechanical parameters fixed, the number of comb fingers 𝑁𝐶𝐹 is proportional to the 

drive displacement 𝑥𝑑 on the proof masses. From the previous point we can extract the optimal sensitivity 

as the one that matches 𝑦𝑚𝑎𝑥 with the maximum input angular rate Ω𝐹𝑆𝑅. 

Let’s start by computing the optimal sensitivity 𝑆𝑦 as: 

𝑆𝑦 =
𝑦𝑚𝑎𝑥

Ω𝐹𝑆𝑅
=

106 nm

2000 dps
≈ 53

pm

dps
. 

Knowing the split frequency 𝑓𝑠𝑝𝑙𝑖𝑡 = 𝑓𝑠 − 𝑓𝑑 = 400 Hz, we can find the required 𝑥𝑑 as: 

𝑆𝑦 =
𝑥𝑑

𝜔𝑠𝑝𝑙𝑖𝑡
⇒ 𝑥𝑑 = 𝑆𝑦𝜔𝑠𝑝𝑙𝑖𝑡

180

𝜋
≈ 7.63 μm. 

Finally, from the relationship between driving voltage and drive displacement, we can find 𝑁𝐶𝐹: 

𝑥𝑑 = 𝑣𝑑𝑎𝑉𝑟𝑜𝑡 (2𝑁𝐶𝐹

𝜖0ℎ

𝑔
)

𝑄𝑑

𝑘𝑑
= 𝑣𝑑𝑎𝑉𝑟𝑜𝑡 (2𝑁𝐶𝐹

𝜖0ℎ

𝑔
)

𝑄𝑑

𝜔𝑑
2(𝑚𝑠 + 𝑚𝑑)

⇒ 𝑁𝐶𝐹 =
𝑔𝜔𝑑

2(𝑚𝑠 + 𝑚𝑑)𝑥𝑑

2𝑣𝑑𝑎𝑉𝑟𝑜𝑡𝑁𝐶𝐹𝜖0ℎ𝑄𝑑

≈ 43.6 (43 or 44). 

 

3. 

Firstly, let us compute the intrinsic Noise Equivalent Rate Density (𝑁𝐸𝑅𝐷𝑚) that is due to the white force 

noise 𝑆𝑛𝐹 = 4𝑘𝐵𝑇𝑏 = 4𝑘𝐵𝑇
𝜔𝑠𝑚𝑠

𝑄𝑠
. Dividing this term by the sensitivity in terms of force we obtain: 

𝑁𝐸𝑅𝐷𝑚 = √4𝑘𝐵𝑇
𝜔𝑠𝑚𝑠

𝑄𝑠
⋅

1

2𝑚𝑠𝜔𝑑𝑥𝑑
⋅

180

𝜋
≈ 549

μdps

√Hz
 

Then, let us find the required number of parallel plates 𝑁𝑃𝑃. We are given the data to compute the electronics 

noise due to the feedback resistor 𝑅𝑓 and to the amplifier voltage noise 𝑆𝑛𝑉. By properly bringing these noise 

contributions to the charge amplifier output and input referring it we are able to find the unknown 𝑁𝑃𝑃. The 

total noise referred to the (differential) output of the charge amplifier 𝑆𝑛𝑉,𝐶𝐴 is: 

𝑆𝑛𝑉,𝐶𝐴 = √2𝑆𝑛𝑉
2 (

𝐶𝑓 + 𝐶𝑃 + 2𝑁𝑃𝑃𝐶𝑃𝑃

𝐶𝑓
)

2

+ 2
4𝑘𝐵𝑇

𝑅𝑓
⋅

1

𝜔𝑑𝐶𝑓
, 

where 𝐶𝑃𝑃 is the rest capacitance of one single parallel plate electrode. Since 𝐶𝑃𝑃 =
𝜖0ℎ𝐿𝑃𝑃

𝑔
= 23.6 fF ≈

𝐶𝑃

100
, 

we can assume that, with a reasonable value for 𝑁𝑃𝑃, the contribution of the sense rest capacitance in 

parallel with the parasitic capacitance will be negligible. Therefore, we will use this approximation in the 

following and we can already compute 𝑆𝑛𝑉,𝐶𝐴: 

𝑆𝑛𝑉,𝐶𝐴 = √2𝑆𝑛𝑉
2 (

𝐶𝑓 + 𝐶𝑃

𝐶𝑓
)

2

+ 2
4𝑘𝐵𝑇

𝑅𝑓
⋅

1

𝜔𝑑𝐶𝑓
= 384

nV

√Hz
 

To input-refer this noise as angular rate, we have to find the (differential) voltage sensitivity 𝑆𝑣: 
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𝑆𝑉 =
𝜕𝑦

𝜕Ω
⋅

𝜕𝐶

𝜕y
⋅

𝜕𝑉

𝜕C
= 𝑆𝑦 ⋅ 2𝑁𝑃𝑃

𝐶𝑃𝑃

𝑔
⋅ 2

𝑉𝑟𝑜𝑡

𝐶𝑓
. 

Therefore, the input referred electronic noise 𝑁𝐸𝑅𝐷𝑒 is: 

𝑁𝐸𝑅𝐷𝑒 =
𝑆𝑛𝑉,𝐶𝐴

𝑆𝑉
= 𝑆𝑛𝑉,𝐶𝐴 ⋅

1

𝑆𝑦 ⋅ 2𝑁𝑃𝑃
𝐶𝑃𝑃

𝑔
⋅ 2

𝑉𝑟𝑜𝑡
𝐶𝑓

. 

Imposing 𝑁𝐸𝑅𝐷𝑒 < 𝑁𝐸𝑅𝐷𝑚 we can find the required 𝑁𝑃𝑃: 

𝑆𝑛𝑉,𝐶𝐴

𝑆𝑦 ⋅ 2𝑁𝑃𝑃
𝐶𝑃𝑃

𝑔
⋅ 2

𝑉𝑟𝑜𝑡
𝐶𝑓

< 𝑁𝐸𝑅𝐷𝑚 ⇒ 𝑁𝑃𝑃 >
𝑔𝐶𝑓𝑆𝑛𝑉,𝐶𝐴

4𝐶𝑃𝑃𝑉𝑟𝑜𝑡𝑆𝑦𝑁𝐸𝑅𝐷𝑚
≈ 2.8 → 3. 

𝑁𝑃𝑃 is a reasonable and relatively low value, so the approximation discussed above is valid. With this number 

of parallel plates, the overall noise becomes 549
μdps

√Hz
 √2 = 780

μdps

√Hz
. 

 

4. 

Firstly, let us compute the sensitivity at the 𝑣𝑜𝑢𝑡 node 𝑆𝑣𝑜𝑢𝑡
: 

𝑆𝑣𝑜𝑢𝑡
= 𝑆𝑉𝐺𝐼𝑁𝐴 (

1

2
𝐺𝑚𝑢𝑥) =

𝜕𝑦

𝜕Ω
⋅

𝜕𝐶

𝜕y
⋅

𝜕𝑉

𝜕C
⋅ 𝐺𝐼𝑁𝐴 (

1

2
𝐺𝑚𝑢𝑥𝑣𝑑) = 𝑆𝑦 ⋅ 2𝑁𝑃𝑃

𝐶𝑃𝑃

𝑔
⋅ 2

𝑉𝑟𝑜𝑡

𝐶𝑓
⋅ 𝐺𝐼𝑁𝐴 (

1

2
𝐺𝑚𝑢𝑥𝑣𝑑)

= 375
μV

dps
. 

Then, from the Bode plot of the charge amplifier transfer function we can notice that the phase shift of this 

stage is quite far from the ideal +90° (or -270°). From the plot one can estimate a phase shift 𝜙𝐶𝐴 between 

+95° and +100°. Actually, we have all the data for a precise computation of 𝜙𝐶𝐴: 

𝜙𝐶𝐴 = 180 − tan−1 (
𝑓𝑑

𝑝𝑓𝑏
) = 180 − tan−1(2𝜋𝑅𝑓𝐶𝑓𝑓𝑑) = 95.8 ° 

This affects the demodulation performed by the multiplier! If we arbitrarily assign a phase of 0° to 𝑣𝑑𝑎, i.e. 

𝑣𝑑𝑎 ∝ cos (𝜔𝑑𝑡 + 0), we can assign a phase to all the relevant quantities of this system: 

• 𝑥𝑑 ∝ cos (𝜔𝑑𝑡 −
𝜋

2
), because the mechanical transfer function x/F has a 0° phase shift at low 

frequency, a -180° shift at high frequency and a -90° shift at resonance (which is the relevant one, 

since the drive resonator operates at resonance). 

• 𝐹𝑐𝑜 ∝ cos(𝜔𝑑𝑡 + 0), because the Coriolis force is proportional to the drive velocity, which is the 

derivative of the displacement. The derivative adds +90° with respect to the phase of the 

displacement. 

• 𝑦𝑐𝑜 ∝ cos(𝜔𝑑𝑡 + 0), because the sense resonator operates off-resonance. Since 𝑓𝑑 < 𝑓𝑠, this 

second-order mechanical transfer function does not add any phase shift. 

• 𝑣𝐶𝐴 and 𝑣𝐼𝑁𝐴 ∝ cos(𝜔𝑑𝑡 + 0), because the capacitive gain does not shift the output voltage phase 

with respect to the displacement (or the sense capacitance variation). 𝑣𝑑𝑎 is in phase with the INA 

voltage and is a correct choice for demodulating the Coriolis signal. 

• The quadrature force is, by definition, in quadrature with the Coriolis force, and therefore the related 

displacement and voltage are in quadrature with their Coriolis counterparts. 



 

Ideally, a demodulation using the drive actuation voltage should recover the Coriolis signal and reject the 

quadrature-induced signal. But we can notice from the Bode plot of the charge amplifier transfer function 

that the phase shift of this stage is quite far from the ideal +90° (or -270°). This phase shift is experienced by 

the Coriolis signal but not by the drive actuation voltage used for demodulation, and so the demodulation 

will be imperfect! From the plot one can estimate a phase shift 𝜙𝐶𝐴 between +95° and +100°. Actually, we 

have all the data required for a precise computation of 𝜙𝐶𝐴: 

𝜙𝐶𝐴 = 180 − tan−1 (
𝑓𝑑

𝑝𝑓𝑏
) = 180 − tan−1(2𝜋𝑅𝑓𝐶𝑓𝑓𝑑) = 95.8 ° 

Let’s call the deviation of this phase from the ideal +90° phase error 𝜙𝑒𝑟𝑟 = 𝜙𝐶𝐴 − 90° = +5.8 °. 

To study the effect of this phase error, we can explicitly write the operation performed by the demodulation 

accounting for 𝜙𝑒𝑟𝑟: 

𝑣𝑜𝑢𝑡 ∝ [Ω cos(𝜔𝑑𝑡 + 𝜙𝑒𝑟𝑟) + 𝐵𝑞 sin(𝜔𝑑𝑡 + 𝜙𝑒𝑟𝑟)] cos(𝜔𝑑𝑡) 

where we considered the signal at the INA output proportional to the term within square brackets and the 

drive voltage proportional to the cos factor. By performing the multiplication and neglecting the 2ωd terms, 

filtered out by the LPF, we obtain: 

𝑣𝑜𝑢𝑡 ∝ Ω cos(𝜔𝑑𝑡 + 𝜙𝑒𝑟𝑟 − 𝜔𝑑𝑡) + 𝐵𝑞 sin(𝜔𝑑𝑡 + 𝜙𝑒𝑟𝑟 − 𝜔𝑑𝑡) = Ω cos(𝜙𝑒𝑟𝑟) + 𝐵𝑞 sin(𝜙𝑒𝑟𝑟), 

where cos(𝜙𝑒𝑟𝑟) ≈ 0.995 can be neglected. Therefore, at the output one can observe the following signal: 

𝑣𝑜𝑢𝑡 = 𝑆𝑣𝑜𝑢𝑡
[𝛺𝑡 cos(2𝜋𝑓Ω𝑡) + 𝐵𝑞 sin(𝜙𝑒𝑟𝑟)] = [37 cos(2𝜋𝑓Ω𝑡) + 11] mV. 

 

As an extra, one can even consider the phase shift given by the sense mechanical transfer function y/F. One 

can write this transfer function as: 

𝑌(𝑗𝜔)

𝐹𝑦(𝑗𝜔)
=

1

𝑘𝑠
⋅

1

−𝜔2 +
𝑗𝜔𝑠𝜔

𝑄𝑠
+ 𝜔𝑠

2
, 

whose phase shift 𝜙𝑑𝑠 at the drive resonance frequency is given by the arc tangent of the ratio of the real 

and imaginary parts: 

𝜙𝑑𝑠 = − tan−1 (

𝜔𝑠𝜔𝑑
𝑄𝑠

𝜔𝑠
2 − 𝜔𝑑

2 ) ≈ −1.77 °. 

Considering also this phenomenon leads to a slightly lower 𝜙̃𝑒𝑟𝑟 = 𝜙𝑒𝑟𝑟 + 𝜙𝑑𝑠 ≈ 4°: this does not 

significantly affect the Coriolis signal, but reduces to some extent the quadrature offset seen at the output. 


