
Last Name __Dall’Esito ___ Given Name ___Addolorata____ ID Number ___03092018____ 

Question n. 1 

The root Allan variance is a commonly adopted technique to characterize inertial sensors. Discuss the 

operative measurement procedure, present typical sample graphs and indicate how to use them for a quick 

evaluation of the performance of inertial sensors. 

What do you expect in your graphs if, while measuring the root Allan variance, you apply a temperature 

change to two sensors, one with good and one with poor offset drift coefficient with temperature? 

 

The root Allan variance is a widely adopted method to characterize inertial sensors as it simultaneously and 

rapidly gives information about short-term (sensor noise) and long-term (offset drift and stability) 

performance. This is particularly intriguing for navigation applications, where short-term noise results in 

random walk, and offset drifts result in navigation error due to offset errors accumulation. 

From an operative point of view, the Allan variance can be obtained by capturing the sensor output (under 

no external stimulus, rotations or accelerations) for a certain amount of time. This time slot should be 

significantly large to capture effects of offset drifts induced by environmental changes (e.g. temperature or 

humidity). So, it is typically of several tens of minutes to hours or even days, depending on the target 

application and on the required stability performance of the sensor. 

This interval is split into a certain number M of sub-intervals of duration 𝜏. Within each interval M, the 

average value of the quantity of interest (measured acceleration or rate) 𝑥𝑘 is calculated. Similarly to a 

standard variance, the Allan variance accounts for the mean squared error between the considered sample 

and another value: this value is however the mean sample of the next slot, 𝑥𝑘+1. For the considered 

observation time 𝜏, the definition thus yields: 

𝜎𝐴𝑉
2 =

1

2(𝑀 − 1)
 ∑ (𝑥𝑘+1̅̅ ̅̅ ̅̅ − 𝑥𝑘̅̅ ̅)2

𝑀−1

𝑘=1

 

(note: for M intervals there are M-1 differences; further, 

the factor 2 at the denominator accounts for the fact that 

both the samples are noisy, unlike in a standard variance 

calculation). 

The procedure is then repeated at several different 

observation times 𝜏 (as schematically shown in the figure) 

and the root Allan variance graph is obtained by plotting 

𝜎𝐴𝑉 versus the observation time. Usually, the maximum 

observation time is 1/10 of the measurement time (to 

allow at least 10 samples to average on), and the minimum 

observation time should be larger than twice the sampling time, just to cope with the sampling theorem and 

avoid aliasing. 

Given the two average (integration) operations and the derivative (difference) operation, the AV method 

corresponds to apply a band-pass filter with bandwidth proportional to 1/𝜏. 

A typical resulting root Allan variance graph is shown aside. One can distinguish three major regions. The first 

one shows a slope of -10 dB/decade, and corresponds to white noise. Indeed, the longer the observation 

time, the lower the bandwidth of the BPF and the larger the number of samples on which noise is averaged. 

This is consistent with an observed noise reduction by a factor proportional to the square root of the 

considered samples. 



 

The second region is flat, and corresponds to 1/f noise 

contributions in the system: indeed, a BOF with a 

bandwidth proportional to 1/𝜏 applied to a noise 

contribution proportional to 1/f gives a constant value.  

The third region is related to very slow changes of the 

output (offset drifts), which can be induced by 

environmental changes. Often, this can be modeled as a 

sort of 1/f2 noise, and indeed appear as a growing 

contribution with slope +10 dB/decade. The point in the 

curve that reaches the minimum, is named the stability 

of the sensor. E.g. the gyroscope shown in the figure has 

a stability of 25 mdps/√Hz at about 3 s observation time. 

The root Allan variance can be conveniently used to measure sensor noise. Indeed, there is a direct link 

between the white and 1/f noise coefficients of the noise power spectral density, and the values measured 

by the AV graph: 

𝜎𝐴𝑉, 𝛺
2 (𝜏) =

𝑆𝛺,𝑊

2 𝜏
 

𝜎𝐴𝑉, 𝛺
2 (𝜏) = 2 𝛼𝑛 𝑙𝑜𝑔 (2) 

Finally, if we consider two sensors with similar noise 

performance, but different offset drift coefficient, we will 

observe that the right region of the AV graph of the “bad” sensor 

worsens in presence of temperature changes (as indicated in the 

figure), while it remains substantially stable for the sensor with 

“good” temperature drift coefficient. 

Correspondingly, the “bad” sensor will see a stability point which 

is higher and/or anticipated in terms of observation time. 
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Question n. 2 

You are designing an ultra-low-pixel-size 3T CMOS 

image sensor, and you want to estimate the 

foreseen performance. The design parameters are 

given in the table: 

(i) calculate the expected signal-independent 

noise contribution, in terms of electrons rms; 

(ii) calculate the charge (in electrons) that makes 

the pixel saturate, and the corresponding 

photon flux; 

(iii) draw a clearly quoted photon transfer curve 

(PTC), in units of electrons along both axes (in 

particular, quote those points where the three different noise slopes intersect); 

(iv) evaluate the DR from the represented photon transfer curve. 

Physical Constants 

kb = 1.38 10-23 J/K 

q = 1.6 10-19 C 

ε0∙εSi = 8.85 10-12 ∙ 11.7 F/m 

ε0∙εOx = 8.85 10-12 ∙ 4 F/m 

T = 300 K 

 

(i) 

Signal-independent noise contributions are represented by reset noise, dark current shot noise and dark-signal nonuniformity. About 

the latter we are given no information, so we assume it to be negligible. Dark current shot noise is immediately calculated in terms 

of number of electrons as: 

𝜎𝑒𝑙,𝑑𝑎𝑟𝑘 =
√𝑞 ⋅ 𝑖𝑑 ⋅ 𝑡𝑖𝑛𝑡

𝑞
= 0.95 𝑒𝑟𝑚𝑠 

For the calculation of reset noise, we need to evaluate the capacitance affecting the anode node, formed by the depletion capacitance 

and the MOS capacitance (we assume it as the full gate to channel capacitance). Taking into account the fill factor for the depletion 

capacitance, they are calculated as: 

𝐶𝑑𝑒𝑝 =
𝜖0𝜖𝑆𝑖𝐴𝑝𝐹𝐹

𝑥𝑑𝑒𝑝
=

𝜖0𝜖𝑆𝑖(𝐿𝑝)
2

𝐹𝐹

𝑥𝑑𝑒𝑝
= 0.134 𝑓𝐹 

𝐶𝑀𝑂𝑆 =
𝜖0𝜖𝑂𝑥(𝐿𝑀𝑂𝑆)2

𝑡𝑜𝑥
= 0.142 𝑓𝐹 

So that the reset noise contribution in terms of electrons can be calculate as: 

𝜎𝑒𝑙,𝑘𝑇𝐶 =

√𝑘𝐵𝑇(𝐶𝑑𝑒𝑝 + 𝐶𝑀𝑂𝑆)

𝑞
= 6.68 𝑒𝑟𝑚𝑠 

We see that reset noise dominates over dark current shot noise at the given integration time. The overall signal-independent shot 

noise is the quadratic sum of these two contributions (6.75 erms), which substantially equals the reset noise. 

(ii) 

Neglecting overdrive drops across the transistors, we assume the full voltage drop to be VDD. In this conditions, the maximum number 

of electrons that can be measured by the pixel is readily calculated as: 

𝑁𝑒𝑙,𝑚𝑎𝑥 =
𝑄𝑚𝑎𝑥

𝑞
=

𝑉𝐷𝐷(𝐶𝑑𝑒𝑝 + 𝐶𝑀𝑂𝑆)

𝑞
= 4309 𝑒  

Square pixel side  Lp 1.8 µm 

Fill factor  FF 0.4 

Silicon quantum efficiency  ηsi 0.6 

Filter transmittance  TCFA 0.8 

Depletion region depth  xdep  1 µm 

MOS transistor length and width  LMOS 200 nm 

MOS oxide thickness tOx 10 nm 

Pixel bias voltage VDD 2.5 V 

Integration time  tint 2.9 ms 

Pixel dark current  id 0.05 fA 

Photo-response nonuniformity  σPRNU% 7 % 



 

From this number and from the equation that relates the photon flux to the photocurrent of the pixel we can calculate the maximum 

acceptable photon flux at the given integration time: 

𝑖𝑝ℎ,𝑚𝑎𝑥 = Φ𝑚𝑎𝑥 𝑞 𝜂 𝑇𝑆𝑖  (𝐿𝑃)2 

𝑖𝑝ℎ,𝑚𝑎𝑥𝑡𝑖𝑛𝑡

𝑞
=

𝑄𝑚𝑎𝑥

𝑞
= 𝑁𝑒𝑙,𝑚𝑎𝑥 = Φ𝑚𝑎𝑥 𝜂 𝑇𝑆𝑖  (𝐿𝑃)2 𝑡𝑖𝑛𝑡 

Φ𝑚𝑎𝑥 =
𝑁𝑒𝑙,𝑚𝑎𝑥

𝜂 𝑇𝑆𝑖  (𝐿𝑃)2 𝑡𝑖𝑛𝑡
= 9.55 1017

𝑝ℎ

𝑠 𝑚2 

In this calculation there is an assumption that the pixels feature microlenses, so the FF does not appear in the formula. The 

assumption is reasonable because the pixel size is very small. In absence of microlenses, the same calculation would yield a photon 

flux increased by 1/0.4, i.e. 2.39 1018 𝑝ℎ

𝑠 𝑚2
. 

(iii) 

To draw the graph, we calculate the relevant points. This can be done by equating the three different noise contributions. 

Signal independent noise crosses photon shot noise when the signal (in terms of charge) is: 

√𝑞 𝑖𝑝ℎ𝑡𝑖𝑛𝑡

𝑞
= 6.75 𝑒𝑟𝑚𝑠   →    

𝑖𝑝ℎ𝑡𝑖𝑛𝑡

𝑞
= (6.75 )2 = 45.5 𝑒 

In this point, the overall noise is √2*6.75 erms = 9.54 erms. 

Photon shot noise equals PRNU noise when the signal (in terms of charge) is: 

√𝑞 𝑖𝑝ℎ𝑡𝑖𝑛𝑡

𝑞
= 𝜎𝑃𝑅𝑁𝑈,%

𝑖𝑝ℎ𝑡𝑖𝑛𝑡

𝑞
    →     

𝑖𝑝ℎ𝑡𝑖𝑛𝑡

𝑞
=

1

𝜎𝑃𝑅𝑁𝑈,%
2 = 204 𝑒 

In this point, the overall noise is 
√2𝑞 𝑖𝑝ℎ𝑡𝑖𝑛𝑡

𝑞
 = √408 erms = 20.2 erms. Considering the signal independent noise floor and the saturated, 

both already calculated, the graph is readily drawn. The black lines indicate the points where S=N and of saturation. 
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(iv) 

The DR is immediately evaluated from the graph by taking the ratio between the signal corresponding to saturation and the signal 

corresponding to S=N. Note that this signal is slightly larger than the value of signal-independent noise: this means that photon shot 

noise is (though very small) not completely negligible in this condition. The result is: 

𝐷𝑅 = 20 log10

𝑁𝑒𝑙,𝑚𝑎𝑥

𝑁𝑒𝑙,𝑚𝑖𝑛
= 20 log10

4309

7.3
= 55.5 𝑑𝐵 
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Question n. 3 

You are analyzing the results of the 

electromechanical characterization of a 

square-shaped MEMS accelerometer, 

performed using one set of parallel 

plate electrodes as the actuation port, 

and the other set as the sensing port: 

(i) from the shown ring-down 

measurement, extract the 

accelerometer stiffness k; 

(ii) can you also determine the 

intrinsic NEAD (in [µg/√Hz])? 

(iii) from the given C-V curve, 

derive the rest gap of the 

parallel plate electrodes. 

At this point, you can couple your 

sensor with the electronic readout 

chain shown in figure, now using both 

parallel plates for differential sensing: 

(iv) find the value of Vac that 

optimizes the output swing at 

the rail-to-rail INA output. 

 

 

                                                                                                                                                    Physical Constants 

q = 1.6 10-19 C 

kb = 1.38 10-23 J/K 

T = 300 K (if not specified) 

ε0 = 8.85 10-12 F/m 

  

           

Actuation rest capacitance  C0,a 200 fF  

Sense rest capacitance  C0,s 200 fF 

Accelerometer side length  L 300 µm 

Effective density  ρeff  (already 
includes holes of PP cells) 

0.8 ⋅ 2320 kg/m3 

Process height  H 30 µm 

Required  FSR 32 g 

Feedback capacitor  Cf 200 fF 

INA Gain  Gina 5 

INA supply voltage  VDD ±3 V 

Time [ms] 



 

 

(i) First of all, the mass of the accelerometer can be calculated as: 

 

𝑚 = 𝜌𝑒𝑓𝑓 ⋅ 𝐿2 ⋅ 𝐻 = 5 𝑛𝑘𝑔 

In the zoomed area of the ring-down graph, we can count 3 periods in 3 ms and hence the resonant    

frequency f0  turns to be equal to 3 kHz. The stiffness is thus readily obtained: 

𝜔0 = √
𝑘

𝑚
→ 𝑘 =  𝜔0

2𝑚 = 1.78 𝑁/𝑚 

(ii) From the ring down measurement, we can graphically extract the information about the 

exponential decay time constant, obtaining a τ ∼ 1 ms: 

 

Thus, the corresponding quality factor can be calculated using the relation: 

𝜏 =
𝑄

𝜋𝑓0
→ 𝑄 ∼ 10 

and, consequently, the NEAD is readily obtained: 

𝑁𝐸𝐴𝐷 = √
𝑘𝑏𝑇𝜔0

𝑚𝑄
= 8 𝜇𝑔/√𝐻𝑧 

(iii) The C-V characterization curve is obtained applying an increasing voltage Va to the actuation port 

and reading the capacitive variation at the sense electrode. Given the voltage drop, the rotor 

experiences an electrostatic force: 

𝐹 =
𝑉𝑎

2

2
⋅

𝐶0

𝑔
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Consequently, the static displacement of the proof mass will be: 

𝑥 =
𝐹

𝑘
=  

𝑉𝑎
2

2
⋅

𝐶0

𝑔
⋅

1

𝑘
  

The linearized capacitance variation at the sense port is given by: 

𝐶𝑠 = 𝐶0,𝑠 − Δ𝐶𝑠 = 𝐶0,𝑠 −
𝑑𝐶

𝑑𝑥
⋅ 𝑥 =  𝐶0,𝑠 −

𝐶0

𝑔
⋅ 𝑥 

Substituting the expression of the displacement into the last equation, and rearranging the 

terms, the gap can be obtained as: 

𝑔 = √
𝐶0

2𝑉𝑎
2

2𝑘Δ𝐶𝑠
 

Choosing a point on the graph and substituting its coordinates in the equation, g = 2 µm is 

obtained.  

(iv) The well-known accelerometer readout scheme presents a sensitivity equal to: 

 

𝑆 =
1

𝜔0
2 ⋅

2𝐶0

𝑔
⋅

𝑉𝑎𝑐

𝐶𝑓
𝐺𝑖𝑛𝑎 

 

The INA output has to reach the supply voltage for an input acceleration equal to the full-scale-

range. Thus: 

𝐹𝑆𝑅 ⋅ 𝑆 = 𝑉𝐷𝐷 → 𝑉𝑎𝑐 = 0.68 𝑉 

  



 

 


