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Question n. 1 

Discuss noise in MEMS accelerometers, indicating the different physical sources and which design 

parameters you can act on (with corresponding trade-offs) to optimize the result as a function of the final 

application. 

 

 

 

The first contribution to the total noise of an accelerometer is the thermomechanical noise. Gas molecules 

inside the MEMS package, randomly excited by thermal agitation, hit the seismic mass applying a random 

“fluctuation” force that results in mechanical noise. It can be demonstrated that the noise force density (in  

[N/√Hz]) associated to this statistical phenomenon is given by: 

√𝑆𝐹,𝑡ℎ  = √4𝑘𝐵𝑇𝑏 

where kB is the Boltzmann constant and b is the damping coefficient of the structure. This contribution can 

be input-referred as follows: 

𝑁𝐸𝐴𝐷 = √𝑆𝑎,𝑖𝑛 = √
4𝑘𝐵𝑇𝑏

𝑚2
= √

4𝑘𝐵𝑇𝜔0
𝑄 𝑚

  

The thermomechanical noise can be improved by raising the accelerometer mass (as expected for an inertial 

sensor…) but it can be difficult if area occupation constraints are tight. 

The damping coefficient, typically dominated by parallel plates squeezed-film damping, can be lowered by 

acting on the MEMS encapsulating pressure. Here, another trade off arises: optimization of the bandwidth 

requires ideally a Q in the order of 0.5 (in between overdamped and underdamped conditions) while, on the 

other hand, noise optimization requires high Q (and so, a low b). 

 

For what concerns electronic noise, the critical stage is represented by the front-end amplifier. From the 

noise analysis of the trans-capacitance stage, we know that the input-referred feedback resistor (Rf) noise is 

given by: 

√𝑆𝑅,𝑜𝑢𝑡  = √
4𝑘𝐵𝑇

𝑅𝑓
⋅
1

𝑠𝐶𝑓
⋅
1

𝑆𝐹
 

where Cf is the feedback capacitance and SF is the sensitivity in [V/g]. The resistance can be typically designed 

high enough (e.g. with MOS pseudo-resistors) in order to make this contribution negligible. 

 

Considering now the operational amplifier, we can typically neglect its input-referred current noise, while we 

should consider its voltage noise, that can be brought to the system input as:  

√𝑆𝑣,𝑜𝑢𝑡  = √𝑆𝑣,𝑖𝑛 ⋅ (1 +
𝐶𝑝

𝐶𝑓
) ⋅

1

𝑆𝐹
 



 

This contribution can be minimized by lowering Svin (at the cost of increased power consumption), decreasing 

Cp (designing carefully the interconnections between MEMS and electronics) and raising the sensitivity 

(coping as well with FSR specifications due to linearity constraints). 
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Question n. 2 

A 3T-topology CMOS camera features the 

parameters indicated in the Table. You have to 

test it, comparing predictions and experiments. 

(i) Calculate the pixel conversion gain (in 

μV/electron) assuming initially a very low 

input photon signal. 

(ii) Assuming a linear response for the pixel, 

with the conversion gain calculated above, 

evaluate the input photon flux (number of 

photons per unit area and unit time) 

impinging on the pixel surface that makes the output voltage change by half of the maximum swing. 

(iii) You now use a calibrated photon source to shine the camera with the just calculated photon flux. 

However, you find that the output voltage drops by less than the value calculated above. After explaining 

why, estimate roughly how much less this drop can be with respect to predictions. 

(iv) Evaluate the signal-to-noise ratio (SNR) in the conditions considered at point (iii). 

Physical Constants 

kb = 1.38 10-23 J/K 

h = 6.63 10-34 J s 

c = 3 108 m/s 

q = 1.6 10-19 C 

ε0∙εSi = 8.85 10-12∙11.7 F/m 

T = 300 K 

 

 

(i) 

For small input signals, the pixel can be considered as a reverse biased PN junction with a voltage equal to 

VDD. The junction depletion capacitance can be calculated starting from the expression of the depletion region 

of a unilateral junction: 

𝑥𝑑𝑒𝑝 = √
2𝜖0𝜖𝑆𝑖(𝑉𝐷𝐷 + 𝑉𝐵𝐼)

𝑞 𝑁𝐴
= 1.1 𝜇𝑚 

Taking into account the fact that the diode occupies only an area equal to the overall pixel area multiplied by 

the fill factor, the depletion capacitance can be calculated as: 

𝐶𝑑𝑒𝑝 =
𝜖0𝜖𝑆𝑖𝐴𝑝𝑑
𝑥𝑑𝑒𝑝

=
𝜖0𝜖𝑆𝑖𝐴𝑝𝑖𝑥𝐹𝐹

𝑥𝑑𝑒𝑝
=
𝜖0𝜖𝑆𝑖 𝑙𝑝

2 𝐹𝐹

𝑥𝑑𝑒𝑝
= 0.13 𝑓𝐹 

So that the overall capacitance across which the charge is integrated (process of direct integration) is: 

𝐶𝑖𝑛𝑡 = 𝐶𝑔 + 𝐶𝑑𝑒𝑝 = 0.63 𝑓𝐹 

The conversion gain, in terms of output voltage change per single collected electron, is easily calculated as: 

𝐶𝐺 =
𝑞

(𝐶𝑔 + 𝐶𝑑𝑒𝑝)
= 253 

𝜇𝑉

𝑒−
 

 

Pixel size lp 2 µm 

Fill factor FF 0.35 

Silicon quantum efficiency  ηsi 0.6 

Filter transmittance  TCFA 0.6 

Pixel well p-type doping NA  4∙1021 m-3 

Pixel built-in voltage VBI 0.7 V 

Pixel bias voltage VDD 3 V 

Parasitic capacitance at the gate node CG 0.5 fF 

Integration time  tint 10 ms 

Pixel dark current  id 0.2 fA 

Pixel microlenses Yes 



 

(ii) 

For an ideal pixel (i.e. neglecting transistors voltage drops) the dynamic is the supply voltage, so half the 

dynamic is VDD/2=1.5 V. The number of electrons that cause such a drop is: 

𝑁𝑒− =
Δ𝑉𝑜𝑢𝑡
𝐶𝐺

=
1.5 𝑉

252 
𝜇𝑉
𝑒−

= 5930 𝑒− 

We then know that the relationship between the number of impinging photons and the number of collected 

electrons passes through the quantum efficiency. Note that the presence of microlenses let us neglect the 

loss caused by the non-unitary fill factor: 

𝑄𝑡𝑜𝑡 = 𝑞𝑁𝑒− = 𝜙𝑖𝑛 𝑞 𝑙𝑝
2 𝜂𝑆𝑖 𝑇𝐶𝐹𝐴 𝑡𝑖𝑛𝑡 → 𝜙𝑖𝑛 =

𝑁𝑒−

𝑙𝑝
2 𝜂𝑆𝑖 𝑇𝐶𝐹𝐴 𝑡𝑖𝑛𝑡

= 4.1 ⋅ 1017
𝑝ℎ

𝑠 𝑚2
= 4.1 ⋅ 105

𝑝ℎ

𝑠 𝜇𝑚2
 

 

(iii) 

The assumption done in the calculations so far is that the pixel response is linear. This is not true, as the 

depletion capacitance changes during integration because of the changing voltage across the junction. As an 

example, when the pixel voltage has effectively undergone a 1.5-V drop, the conversion gain becomes: 

𝐶𝐺 =
𝑞

(𝐶𝑔 + 𝐶𝑑𝑒𝑝,1.5)
=

𝑞

(𝐶𝑔 +
𝜖0𝜖𝑆𝑖 𝑙𝑝

2 𝐹𝐹
𝑥𝑑𝑒𝑝,1.5

)

=
𝑞

(

 
 
 
𝐶𝑔 +

𝜖0𝜖𝑆𝑖 𝑙𝑝
2 𝐹𝐹

√2𝜖0𝜖𝑆𝑖(
𝑉𝐷𝐷
2
+ 𝑉𝐵𝐼)

𝑞 𝑁𝐴 )

 
 
 

=
𝑞

(𝐶𝑔 + 0.17 𝑓𝐹)
= 238 

𝜇𝑉

𝑒−
 

Indicating that, effectively, as long as the pixel integrates light 

its conversion gain decreases and thus the slope of the voltage 

ramp decreases (see the figure aside).  It is hard to estimate the 

effective decrease for the input photon flux calculated at point 

(ii). We know that with the just calculated conversion gain the 

drop would be: 

Δ𝑉𝑜𝑢𝑡 = 𝑁𝑒−  𝐶𝐺 = 5930 ⋅ 238
𝜇𝑉

𝑒−
= 1.41 𝑉 

The actual voltage drop will be in between 1.5 V and the value 

calculated above. 

 

(iv) 

In the just-examined conditions, the SNR can be calculated as: 

𝑆𝑁𝑅 = 20 log10
𝑞 𝑁𝑒−

√𝑞(𝑖𝑑  𝑡𝑖𝑛𝑡  +  𝑞 𝑁𝑒−) + 𝑘𝐵𝑇𝐶𝑖𝑛𝑡
=37.7 𝑑𝐵 

Note that there is no significant different if we assume the depletion capacitance for small signals or for large 

signals, as the capacitance at the integration node is dominated by the gate parasitic. 
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Question n. 3 

A MEMS gyroscope based on a tuning-fork topology, 

operated in mode-split conditions, is coupled to the 

driving/readout circuit as shown. In the design phase 

of the system, there are some parameters that still 

need to be dimensioned. 

(i) Assuming initially no quadrature 

compensation, calculate the optimum scale 

factor, such that the output voltage dynamic 

is best exploited. Then, find the corresponding 

optimum value of the feedback capacitance 

CFS of the sense chain. 

(ii) Calculate the optimum drive capacitance CFD to minimize phase noise, the latter being given by the 

expression (in [rad2/Hz]):       𝑆𝑝𝑛 =
𝑆𝑣𝑛𝑜𝑢𝑡,𝐶𝐴,𝑑𝑟𝑖𝑣𝑒

(𝑣𝑜𝑢𝑡,𝐶𝐴,𝑑𝑟𝑖𝑣𝑒)
2
/2

,     where the numerator  𝑆𝑣𝑛𝑜𝑢𝑡,𝐶𝐴,𝑑𝑟𝑖𝑣𝑒  indicates 

the noise power voltage density (in [V2/Hz]) at the output of the charge amplifier of the drive loop 

(point A), and the term   𝑣𝑜𝑢𝑡,𝐶𝐴,𝑑𝑟𝑖𝑣𝑒   indicates the amplitude of the voltage sinusoidal waveform in 

the same point A of the circuit. In the found 

optimum condition, evaluate the phase 

noise value 𝑆𝑝𝑛. 

(iii) Consider now the sense chain. Calculate 

the input-referred noise contribution given 

by the voltage noise of the charge 

amplifiers of the sense chain (neglect 

thermomechanical noise). 

(iv) Assume now that you want to design 

quadrature compensation electrodes. 

With the results of points (ii) and (iii), find 

the acceptable residual quadrature Bq such 

that the input-referred noise contribution 

induced by phase noise and quadrature 

matches the input-referred noise found for 

the sense chain at point (iii).  

Physical Constants 

kb = 1.38 10-23 J/K 

T = 300 K 

 

 

(i) 

In the optimum conditions, the signal (and quadrature) will fill the voltage dynamics. As the two contributions 

are phase shifted by 90°, their sum should be intended as a sum of the modulus and is thus done 

quadratically. This yields: 

𝑆𝐹𝑑𝑝𝑠 =
𝑉𝐷𝐷

√Ω𝑚𝑎𝑥
2 + 𝐵𝑞,𝑚𝑎𝑥

2

=
3 𝑉

√20002 + 50002 𝑑𝑝𝑠
= 0.56

𝑚𝑉

𝑑𝑝𝑠
 

Target full-scale range ΩFSR ±2000 dps 

Maximum quadrature ΩB,max ±5000 dps 

Drive displacement xd 5 µm 

Mode split value Δfms 1.2 kHz 

Sense PP capacitance (s.e.) C0PP 200 fF 

PP gap g 2 µm 

Circuit supply voltage VBIAS ±3 V 

Rotor voltage Vrot 12 V 

Amplifier voltage noise SVn (36 nV/√Hz)2 

Parasitic capacitance CP 0.5 pF 

Drive-detection transduction ηD 80∙10-9 A/(m/s) 



 

We know that the scale factor (the sensitivity) is related to the feedback capacitance of the sense chain 

through the formula: 

𝑉𝑜𝑢𝑡
Ω
= 𝑆𝐹𝑑𝑝𝑠 = 2

𝑉𝐵𝐼𝐴𝑆
𝐶𝐹𝑆

𝐶0
𝑔

𝑥𝐷
Δ𝜔𝑀𝑆

𝜋

180
 

By inverting the equation and forcing the sensitivity calculated above, we find: 

𝐶𝐹𝑆 = 2𝑉𝐵𝐼𝐴𝑆
𝐶0
𝑔

𝑥𝐷
Δ𝜔𝑀𝑆

1

𝑆𝐹𝑑𝑝𝑠

𝜋

180
= 50 𝑓𝐹 

 

(ii) 

The solution of this point starts by making explicit the expression of phase noise as a function of the amplifier 

noise and of the conversion from drive motion into signal at the point A. Note that the signal corresponds to 

the motional current 𝑖𝑚 multiplied by the drive feedback impedance (1/ 𝑠𝐶𝐹𝐷): 

𝑆𝑃𝑛 =
𝑆𝑉𝑛 (1 +

𝐶𝑃
𝐶𝐹𝐷

)
2

(𝑣𝑜𝑢𝑡,𝐶𝐴,𝑑𝑟𝑖𝑣𝑒)
2
/2
=
𝑆𝑉𝑛 (1 +

𝐶𝑃
𝐶𝐹𝐷

)
2

(
𝑖𝑚
𝑠 𝐶𝐹𝐷

)
2

/2

=
𝑆𝑉𝑛 (1 +

𝐶𝑃
𝐶𝐹𝐷

)
2

(
𝜂𝑑𝑠 𝑥𝐷
𝑠 𝐶𝐹𝐷

)
2
/2

=
𝑆𝑉𝑛 (1 +

𝐶𝑃
𝐶𝐹𝐷

)
2

(
𝜂𝑑𝑥𝐷
𝐶𝐹𝐷

)
2
/2

 

The dependence on the drive detection capacitance can be made clearer as: 

𝑆𝑃𝑛 =
𝑆𝑉𝑛

(𝜂𝑑𝑥𝐷)
2/2

(
1 +

𝐶𝑃
𝐶𝐹𝐷
1
𝐶𝐹𝐷

)

2

=
𝑆𝑉𝑛

(𝜂𝑑𝑥𝐷)
2/2

(𝐶𝐹𝐷 + 𝐶𝑃)
2 

Which indicates that the minimum feedback capacitance for the drive amplifier will minimize phase noise. 

However, we should be sure that the output voltage of this amplifier does not saturate. So, the minimum 

drive capacitance is the one that makes the amplifier output signal correspond exactly to the circuit supply 

(in other words, this will give a sinewave at the drive amplifier output with an amplitude at the saturation 

limit): 

𝜂𝑑𝑥𝐷
𝐶𝐹𝐷

= 𝑉𝐵𝐼𝐴𝑆 → 𝐶𝐹𝐷 =
𝜂𝑑𝑥𝐷
𝑉𝐵𝐼𝐴𝑆

= 133 𝑓𝐹 

As this capacitance is compatible with typically available values, we choose to operate with the found 𝐶𝐹𝐷. 

In this condition, phase noise is minimized and, from the expressions above, turns out to be: 

𝑆𝑃𝑛 =
𝑆𝑉𝑛

(𝜂𝑑𝑥𝐷)
2/2

 (𝐶𝐹𝐷 + 𝐶𝑃)
2 = 1.3 ⋅ 10−14

𝑟𝑎𝑑2

𝐻𝑧
 

 

(iii) 

Input-referred-noise generated by the sense-chain amplifier voltage noise can be calculated by bringing this 

noise contribution to the circuit output, and then dividing by the scale factor (the factor 2 accounts for the 

differential configuration, with two uncorrelated noise sources): 

𝑆𝑉𝑛,𝐶𝐴,𝑜𝑢𝑡 = 2𝑆𝑉𝑛 (1 +
𝐶𝑃
𝐶𝐹𝑆
)
2

→ √𝑆𝑉𝑛,𝐶𝐴,𝑑𝑝𝑠 =
√
2𝑆𝑉𝑛 (1 +

𝐶𝑃
𝐶𝐹𝑆
)
2

𝑆𝐹𝑑𝑝𝑠
2 = 1

𝑚𝑑𝑝𝑠

√𝐻𝑧
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(note how, using the sensitivity in [V/dps], we directly obtain the input noise density in dps/√Hz). 

 

(iv) 

We know that phase noise can bring an additional input-referred noise contribution √𝑆𝑃𝑛,𝑖𝑛 (in dps/√Hz) 

through quadrature. Its expression (writte in dpsrms through the bandwidth) can be written as: 

√𝑆𝑃𝑛,𝑖𝑛√𝐵𝑊 = sin(√𝑆𝑃𝑛 𝐵𝑊) ⋅ 𝐵𝑞 = sin(𝜑𝑛𝑜𝑖𝑠𝑒) ⋅ 𝐵𝑞           (𝑠𝑒𝑒
∗)  

where 𝐵𝑊 is the frequency of the system output filter, which limits the bandwidth. By assuming small phase 

noise (i.e. small phase fluctuations compared to 360°, which is reasonable), we can approximate the sine 

function with its argument: 

√𝑆𝑃𝑛,𝑖𝑛√𝐵𝑊 ≈ √𝑆𝑃𝑛 𝐵𝑊 ⋅ 𝐵𝑞   →   √𝑆𝑃𝑛,𝑖𝑛 = √𝑆𝑃𝑛𝐵𝑊 ⋅
𝐵𝑞

√𝐵𝑊
= √𝑆𝑃𝑛 ⋅

𝐵𝑞

√𝐻𝑧
 

(note that now the expression √𝑆𝑃𝑛 𝐵𝑊 should be intended as dimensionless, as it is the approximated 

result of a sine operation: therefore the simplification of 𝐵𝑊 leaves the √𝐻𝑧 at the denominator)**. 

We need to force this contribution to be identical to the noise density found at point (iii) above. This 

equivalence can be calculated as: 

√𝑆𝑃𝑛 ⋅
𝐵𝑞

√𝐻𝑧
= √𝑆𝑉𝑛,𝐶𝐴,𝑑𝑝𝑠 → 𝐵𝑞,𝑚𝑎𝑥 =

√𝑆𝑉𝑛,𝐶𝐴,𝑑𝑝𝑠 √𝐻𝑧

√𝑆𝑃𝑛
= 5 𝑑𝑝𝑠 

 

 

 

 

 

 

 

 

 

 
*phase noise, indicated by this expression, is discussed in the sixth lesson about gyroscopes in the course slides 

 
**note that we are approximating phase noise as white. In reality, phase noise will be itself filtered by the drive loop bandwidth, but 

this goes beyond the purpose of this exercise and of the course. 

  

           



 

 


