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Question n. 1 

Explain what the so-called quadrature error in MEMS gyroscopes is. Focus at least on (i) its origin, (ii) its input-

referred expression, (iii) its effects on the system performance and (iv) its compensation techniques. 

 

(i) 

An imperfect MEMS process may result in a drive resonator whose excited motion follows a direction not 

exactly orthogonal to the sense mode. As a consequence, there is a continuous oscillating motion along the 

sensing direction, during drive motion, even in absence of external angular rate. The origin of this 

phenomenon lies mostly in etching nonuniformities (asymmetric spring terms, asymmetric comb finger 

gaps) and in the skew angle issue (non-orthogonality of the sidewalls). As the Coriolis force is proportional 

to the velocity of the drive motion, while this contribution is proportional to the displacement, the latter is 

in quadrature with the signal, so one can look for ways to compensate it. 

 

(ii) 

An input referred expression for quadrature can be found by defining an equivalent quadrature force 𝐹𝑞 

that acts in the sense direction, proportional to the motion in the drive direction through a cross-spring 

term kds: 

𝐹𝑞 = 𝑘𝑑𝑠 𝑥 

This can be inserted in the sense motion equation: 

𝑚𝑆𝑦̈ + 𝑏𝑠𝑦̇ + 𝑘𝑠𝑦 + 𝑘𝑑𝑠𝑥 = −2𝑚𝑠Ω𝑥̇ 

After simplifications, one finds that the equivalent, input-referred quadrature can be written as: 

𝐵𝑞 =
𝑘𝑑𝑠

2 𝑚𝑆 𝜔𝐷
 

Which can be finally rearranged by accounting for the dependence of the cross-

spring term 𝑘𝑑𝑠 on the angle 𝛼 representing the deviation of the drive motion from 

the ideal trajectory:  

𝐵𝑞 ≈
𝛼

2
𝜔𝐷 

This tells us that – though it is good to have a high resonance frequency to stay out of the audio bandwidth 

and far from environmental vibrations – the choice of the operating frequency cannot be unbounded 

towards high values. 

 

(iii) 

If demodulation is operated by an ideal waveform cos(𝜔𝐷 ∙ 𝑡) (noiseless and with the correct and constant 

phase), in principle quadrature error can be bypassed. If saturation within the electronic chain before 

demodulation is avoided, then quadrature does not represent an issue. 

However, a real demodulation waveform cos(𝜔𝐷 ∙ 𝑡 +  𝜑𝑒𝑟𝑟 + 𝜑𝑛𝑜𝑖𝑠𝑒) always includes a phase error 

(which may drift in time) and is affected by phase noise. The result thus yields: 



 

𝑉𝑑𝑒𝑚 = 𝑆[Ω cos(𝜔𝐷 𝑡) + 𝐵𝑞 sin⁡(𝜔𝐷 𝑡)] ∙ cos(𝜔𝐷𝑡 + 𝜑𝑒𝑟𝑟 + 𝜑𝑛𝑜𝑖𝑠𝑒) ∙ 𝐿𝑃𝐹 ≈ 

≈ 𝑆[Ω cos(𝜑𝑒𝑟𝑟 + 𝜑𝑛𝑜𝑖𝑠𝑒) + 𝐵𝑞 sin(𝜑𝑒𝑟𝑟 + 𝜑𝑛𝑜𝑖𝑠𝑒)] = 𝑆 ⋅ 𝛺 + 𝑆 ⋅ 𝐵𝑞 ∙ 𝜑𝑒𝑟𝑟 + 𝑆 ⋅ 𝐵𝑞 ∙ 𝜑𝑛𝑜𝑖𝑠𝑒 

The expression above shows how mechanical nonidealities (quadrature), coupled to electronics 

demodulation nonidealities (phase offset and noise) bring to the output additional noise and additional 

offset terms. Note also that if the relative phase of the demodulation waveform changes, then an offset 

drift is observed. 

 

(iv) 

To mitigate quadrature, one can pursue one of the following strategies: 

- design optimization (symmetricity, good spring topology, wide springs, optimized resonance 

frequency…); 

- electronic compensation: inject a signal equal and opposite with respect to quadrature in the sense 

chain. This requires a one-time calibration. Residual drifts due to imperfect calibration are not 

compensated by this technique; 

- electromechanical compensation: according to the Tatar 

scheme, shown below, a suitable design of additional 

electrodes within the Coriolis frame leads to a force that: 

 

𝐹𝑄𝐶 = −4
𝜀0 ∙ ℎ

 𝐷𝑄
2 𝑉𝐷𝐶  𝑁𝑄𝐶  ∆𝑉 𝑥 

 

o is proportional to the drive amplitude x; 

o is orthogonal to the drive direction; 

o has a modulus that depends of the values of VDC, 

∆𝑉 and the number of plates NQC; 

o has a sign which can be set by choosing the sign of 

∆𝑉. 

This force can be thus initially trimmed to compensate 

quadrature. 
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Question n. 2 

A manufacturer of CMOS digital imaging 

cameras based on the 3T topology sells two 

products which have the identical parameters 

given in the Table, except for the presence of a 

CFA for camera #1, and the absence of a CFA for 

camera #2 (which is thus a black&white 

camera). For both the cameras: 

(i) evaluate the maximum dynamic range 

(neglect quantization noise); 

(ii) consider now quantization noise: draw a 

quoted graph of the maximum DR as a 

function of the n. of bits of the ADC. 

Choose the number of bits such that the 

maximum DR remains larger than 62 dB; 

(iii) evaluate now the average SNR under a 

555-nm, monochromatic optical intensity 

(power per unit area) of 36 mW/m2, evenly  

impinging on the whole sensor. 

Physical Constants 

kb = 1.38 10-23 J/K 

q = 1.6 10-19 C 

h = 6.626 10-34 Js 

c = 3 108 m/s 

εSi = 11.7 

ε0 = 8.85 10-12 F/m 

 

 

 

(i)  

The DR is a characteristic parameter of the pixel, independent of the amount of incoming signal and so, in 

this case, independent of the type of camera that we consider. Its calculation requires the estimation of the 

maximum and minimum measurable signals, limited by saturation and signal-independent noise 

respectively. 

The presence of microlenses indicates that the area for the depletion capacitance calculation and the dark 

current should take into account the factor FF = 0.5. We evaluate both quantities as: 

𝑖𝑑 = 𝑗𝑑 ⋅ 𝐴 ⋅ 𝐹𝐹 = 𝑗𝑑 ⋅ 𝑙𝑝
2 ⋅ 𝐹𝐹 = 0.4⁡10−3

𝐴

𝑚2
⁡(3⁡10−6)⁡𝑚2 ⋅ 0.5 = 1.8⁡𝑓𝐴 

𝐶𝑑𝑒𝑝 =
(𝜖0𝜖𝑠𝑖 ⋅ 𝐴 ⋅ 𝐹𝐹)

𝑥𝑑𝑒𝑝
=
(8.85⁡10−12

𝐹
𝑚 ⁡⁡11.7⁡⁡

(3⁡10−6)⁡𝑚2 ⋅ 0.5)

10−6⁡𝑚
= 0.47⁡𝑓𝐹 

The total integration capacitance becomes thus: 

𝐶𝑖𝑛𝑡 = 𝐶𝑑𝑒𝑝 + 𝐶𝑔 = 0.93⁡𝑓𝐹 

Pixel side (square shape) 3 µm 

Fill factor 0.5 

Microlenses Yes 

Silicon quantum efficiency (at 555 nm) 0.7 

RGB Filter transmittance (at 555 nm) 0.2 – 0.5 – 0.1  

RGB arrangement Bayer GRGB 

Dark current density 0.4 mA/m2 

Parasitic capacitance at gate node 0.466 fF 

Depletion region width 1 µm 

Supply voltage 3 V 

Integration time range of the camera 1 ms – 10 s 



 

At this point we can write the maximum DR, which should be calculated at the minimum integration time 

(i.e. when shot noise is at its minimum value): 

𝐷𝑅 = 20 log10 (
𝑉𝑑𝑑 ⁡𝐶𝑖𝑛𝑡

√𝑘𝐵𝑇𝐶𝑖𝑛𝑡 + 𝑞⁡𝑖𝑑𝑡𝑖𝑛𝑡,𝑚𝑖𝑛
) = 𝟔𝟐. 𝟕𝟓⁡𝒅𝑩⁡ 

 

(ii) 

With a negligible n. of bits, the DR will reach its maximum value. If the n. of bits is too small, quantization 

noise will begin affecting the DR. The formula above should be modified by accounting for quantization 

noise as: 

𝜎𝑞,𝐶
2 =

𝐿𝑆𝐵2

12
⁡𝐶𝑖𝑛𝑡
2 =

𝑉𝑑𝑑
2

22𝑛12
⁡𝐶𝑖𝑛𝑡
2 ⁡ 

𝐷𝑅 = 20 log10

(

 
𝑉𝑑𝑑⁡𝐶𝑖𝑛𝑡

√𝑘𝐵𝑇𝐶𝑖𝑛𝑡 + 𝑞⁡𝑖𝑑𝑡𝑖𝑛𝑡,𝑚𝑖𝑛 +
𝑉𝑑𝑑
2

22𝑛12
⁡𝐶𝑖𝑛𝑡
2
)

 ⁡ 

 

Inverting the formula above and setting DR = 62 dB, one obtains a minimum number of 10 bits to satisfy 

the condition. 

For what concerns the graph, assuming that quantization noise dominates, the DR expression becomes 

linear with 2𝑛: 

𝐷𝑅𝑞𝑢𝑎𝑛𝑡−𝑜𝑛𝑙𝑦 = 20 log10(
𝑉𝑑𝑑 ⁡𝐶𝑖𝑛𝑡
𝑉𝑑𝑑
2𝑛√12

⁡𝐶𝑖𝑛𝑡⁡
) = 20 log10(2

𝑛√12) 

The graph is thus the combination of DR as calculated at point (i), and DR as expressed by the simplified 

formula above: 
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(iii) 

For the last point, one can calculate the photocurrent on the four different pixels as: 

𝑖𝑝ℎ = ℜ ⋅ 𝑇 ⋅ 𝐴 ⋅ 𝐼 

where I is the impinging optical intensity, A is the full pixel area (the FF issue is bypassed through 

microlenses), T is the filter transmittance (1 for the BW case) and ℜ is the responsivity: 

ℜ =
𝜂𝑞𝜆

ℎ𝑐
= 0.313⁡𝐴/𝑊 

The currents are thus 

𝑖𝑝ℎ,𝐵𝑊 = 0.313
𝐴

𝑊
⁡(3𝜇𝑚⁡)2 ⋅ 36

𝑚𝑊

𝑚2
= 101⁡𝑓𝐴 

𝑖𝑝ℎ,𝑅 = 0.313
𝐴

𝑊
⁡(3𝜇𝑚⁡)2 ⋅ 36

𝑚𝑊

𝑚2
0.2 = 20⁡𝑓𝐴 

𝑖𝑝ℎ,𝐺 = 0.313
𝐴

𝑊
⁡(3𝜇𝑚⁡)2 ⋅ 36

𝑚𝑊

𝑚2
0.5 = 50⁡𝑓𝐴 

𝑖𝑝ℎ,𝐵 = 0.313
𝐴

𝑊
⁡(3𝜇𝑚⁡)2 ⋅ 36

𝑚𝑊

𝑚2
0.1 = 10⁡𝑓𝐴 

Noise can be calculated using the above evaluated current values for the photon shot noise contribution. We 

choose the same integration time as for the other points (you could calculate this point at any integration 

time, as this was not specified). We also use the just-evaluated n. of bits (10) for quantization noise. 

In the calculation of the SNR, when looking at different GRGB pixels, signals sum up linearly (twice the G 

contribution and once the B and R contributions), while noise sums up quadratically. As for the CFA case we 

are considering four pixels, to make a fair comparison in terms of SNR we should bin four pixels also for the 

BW case. We thus get: 

𝑆𝑁𝑅𝐵𝑊−4𝑝𝑖𝑥𝑒𝑙 = 20 log10

(

 
404⁡𝑓𝐴

√4𝑘𝐵𝑇𝐶𝑖𝑛𝑡 + 𝑞(404⁡𝑓𝐴 + 𝑖𝑑) + 4𝜎𝑞,𝐶
2

)

 = 32.9 

𝑆𝑁𝑅𝐶𝐹𝐴−4𝑝𝑖𝑥𝑒𝑙 = 20 log10

(

 
130𝑓𝐴

√4𝑘𝐵𝑇𝐶𝑖𝑛𝑡 + 𝑞(130⁡𝑓𝐴 + 𝑖𝑑) + 4𝜎𝑞,𝐶
2

)

 = 26.3 

As expected, CFA noise has, on average, a worse SNR than the BW case. 
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Question n. 3 

Consider the accelerometer and the related front-end electronics sketched in figure 1. 

(i) Using the data reported in the Table, and knowing that the maximum acceptable linearity error is equal 

to 1%, determine the optimum sensitivity, expressed in [mV/g]; 

(ii) Find the required input voltage noise density of the front-end operational amplifiers in order to obtain 

a system resolution of 50 µg/√Hz. 

Consider now a mechanical offset of the proof mass, xos = 100 nm, affecting the parallel plate cells as depicted 

in figure 2. 

(iii) Consider two cases: a 20 g and a -20 g acceleration, both directed along the x axis. Calculate the 

differential capacitance variation in the two cases. 

(iv) Starting from results of point (iii), consider a vibration (i.e. a sinusoidal acceleration) of amplitude 20g 

at about 28 kHz. What is the input-referred system output (in g) after the 50-Hz low-pass-filter (LPF), if 

no other accelerations are applied to the sensor? 

 Physical Constants 

 q = 1.6 10-19 C 

kb = 1.38 10-23 J/K 

T = 300 K (if not specified) 

ε0 = 8.85 10-12 F/m 

 

 

  

  

Accelerometer parameters  

Parallel-plate rest gap 1.5 µm 

Mass 5 10-9 kg 

AC bias amplitude (VAC) 1 V 

Required FSR ± 5 g 

Parallel plates area (single-ended) 60000 (µm)2 

Quality factor 1.5 

Electronics parameters  

Feedback capacitance 1 pF 

Parasitic capacitance 10 pF 

INA Gain 1 

Figure 2 

Figure 1 



 

(i) Knowing the rest gap and the linearity error specification at the FSR, we can derive the full-scale 

displacement of the accelerometer:  

𝑥𝐹𝑆𝑅 = 𝑔 ⋅ √
𝜖𝑙𝑖𝑛,%
100

= 150⁡𝑛𝑚 

 

And consequently, the accelerometer resonant frequency: 

 

𝑥𝐹𝑆𝑅
𝑎𝐹𝑆𝑅

=
1

𝜔0
2 → 𝑓0 = 2𝜋√

𝑎𝐹𝑆𝑅
𝑥𝐹𝑆𝑅

= 2.8⁡𝑘𝐻𝑧 

At this point, the calculation of the sensitivity is straightforward: 

𝑆 =
1

𝜔0
2 ⋅
Δ𝐶

Δ𝑥
⋅
Δ𝑉

Δ𝐶
=
1

𝜔0
2 ⋅
2𝐶0
𝑔
⋅
𝑉𝑎𝑐
𝐶𝑓
⋅ GINA = ⁡14⁡

𝑚𝑉

𝑔
 

 

 

 

(ii) We can start calculating the thermomechanical noise contribution: 

𝑁𝐸𝐴𝐷 = √
4𝑘𝐵𝑇𝜔0
𝑚𝑄

= 20⁡𝜇𝑔/√𝐻𝑧 

This term will not be the dominant one in the noise budget. Let’s consider only the operational 

amplifier voltage noise: 

𝑆𝑒𝑙𝑛,𝑖𝑛 = √2𝑆𝑣 ⋅

(1 +
𝐶𝑝
𝐶𝑓
)

𝑆
= 50

𝜇𝑔

√𝐻𝑧
→ 𝑆𝑣 = 45⁡𝑛𝑉/√𝐻𝑧⁡ 

 

 

 

(iii) First, it can be noted that the input acceleration of ±20 g is outside the ±5 g linear range, so we 

cannot linearize the capacitance variation without a non-negligible error. The displacement 

induced by this kind of acceleration is equal to: 

 

=
±20 ⋅ 9.8⁡𝑚/𝑠2

𝜔0
2 =⁡±600⁡𝑛𝑚 

 

We can simply calculate the differential capacitance variation (around the new working point 

given by the mechanical offset), for an acceleration of +20 g: 

Δ𝐶1,+20𝑔 =⁡
𝜖0𝐴𝑝𝑝

𝑔 + 𝑥𝑜𝑠 + 𝑥+20𝑔
−⁡
𝜖0𝐴𝑝𝑝
𝑔 + 𝑥𝑜𝑠

 

 

Δ𝐶2,+20𝑔 =⁡
𝜖0𝐴𝑝𝑝

𝑔 − 𝑥𝑜𝑠 + 𝑥+20𝑔
−⁡
𝜖0𝐴𝑝𝑝
𝑔 − 𝑥𝑜𝑠

 

 

Δ𝐶𝑑𝑖𝑓𝑓,+20𝑔 = Δ𝐶2,+20𝑔 − Δ𝐶1,+20𝑔 =⁡−90.5⁡𝑓𝐹 

 

And for an acceleration of -20g: 
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Δ𝐶1,−20𝑔 =⁡
𝜖0𝐴𝑝𝑝

𝑔 + 𝑥𝑜𝑠 + 𝑥−20𝑔
−⁡
𝜖0𝐴𝑝𝑝

𝑔 + 𝑥𝑜𝑠
 

 

Δ𝐶2,−20𝑔 =⁡
𝜖0𝐴𝑝𝑝

𝑔 − 𝑥𝑜𝑠 + 𝑥−20𝑔
−⁡
𝜖0𝐴𝑝𝑝
𝑔 − 𝑥𝑜𝑠

 

 

Δ𝐶𝑑𝑖𝑓𝑓,−20𝑔 = Δ𝐶2,−20𝑔 − Δ𝐶1,−20𝑔 = ⁡199.1⁡𝑓𝐹 

 

 

Thus, the mechanical offset determines an asymmetry in our sensitivity. 

 

 

 

(iv) The external acceleration is at 28 kHz, one decade beyond the accelerometer resonant 

frequency. Given the -40 dB/dec attenuation of the MEMS transfer function for 𝜔 > 𝜔0, the 

displacement at 28 kHz will be:   

𝑥28⁡𝑘𝐻𝑧,±20𝑔 =⁡
±20 ⋅ 9.8⁡𝑚/𝑠2

𝜔0
2 ⋅

1

100
= ⁡±6⁡𝑛𝑚⁡ 

 

 

We can calculate the two capacitance variations for the peak value of the sinusoidal acceleration 

with the same procedure of point (iii), using this time the updated displacement value: 

 

Δ𝐶𝑑𝑖𝑓𝑓,28𝑘𝐻𝑧,+20𝑔 = Δ𝐶2,28𝑘𝐻𝑧,+20𝑔 − Δ𝐶1,28𝑘𝐻𝑧,+20𝑔 = ⁡2.872⁡𝑓𝐹 

 

 

Δ𝐶𝑑𝑖𝑓𝑓,28𝑘𝐻𝑧,−20𝑔 = Δ𝐶2,28𝑘𝐻𝑧,−20𝑔 − Δ𝐶1,28𝑘𝐻𝑧,−20𝑔 = −2.868⁡⁡𝑓𝐹 

 

 

 

The distorted sinusoidal capacitance variation will have a non-null mean value: 

 

 Δ𝐶𝑚𝑒𝑎𝑛 =⁡
Δ𝐶𝑑𝑖𝑓𝑓,28𝑘𝐻𝑧,+20𝑔+⁡⁡Δ𝐶𝑑𝑖𝑓𝑓,28𝑘𝐻𝑧,−20𝑔

2
= 0.023⁡𝑓𝐹  

 

That will be not filtered by the LPF. Thus, the offset given by the external vibration corresponds 

to an acceleration of: 

  

 𝑎𝑖𝑛,𝑉𝑅𝐸 = Δ𝐶𝑚𝑒𝑎𝑛 ⋅
𝑉𝐴𝐶

𝐶𝑓
⋅
1

𝑆
= 162⁡𝜇𝑔 

 

Comparable with the system resolution. This kind of error is known as VRE (Vibration Rectification Error).  



 

 


