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Question n. 1 

After giving the expression of the signal to noise ratio in a CMOS image sensor, draw a typical SNR vs input 

photocharge graph in presence of all the noise sources that you have studied in the course, for a 3T topology. 

Describe clearly how the sensor dynamic range can be extracted from such a graph. Finally, indicate 

qualitative variations in the graph that you can expect when passing to a 4T topology. 

The SNR can be easily described with an equation, in terms of charge, 
which uses the photocurrent integrated over the integration time at 

the numerator, and all (spatial and temporal) noise contributions 
at the denominator: 

𝑆𝑁𝑅 = 20 log10

𝑖𝑝ℎ ⋅ 𝑡𝑖𝑛𝑡

√𝑞(𝑖𝑝ℎ + 𝑖𝑑)𝑡𝑖𝑛𝑡 + 𝑘𝑏𝑇(𝐶𝑔 + 𝐶𝑑𝑒𝑝) + 𝜎𝑞
2 + (𝑖𝑑𝑡𝑖𝑛𝑡 𝐷𝑆𝑁𝑈%)2 + (𝑖𝑝ℎ𝑡𝑖𝑛𝑡 𝑃𝑅𝑁𝑈%)

2

=
𝑄𝑝ℎ

√𝑞(𝑄𝑝ℎ + 𝑄𝑑) + 𝑘𝑏𝑇(𝐶𝑔 + 𝐶𝑑𝑒𝑝) + 𝜎𝑞
2 + (𝑄𝑑  𝐷𝑆𝑁𝑈%)2 + (𝑄𝑝ℎ  𝑃𝑅𝑁𝑈%)

2
 

We can highlight three different kinds of terms: 

- signal independent noise includes kTC noise, dark current shot 

noise, quantization noise and DSNU. All these contributions are 
independent of the input photocharge. Therefore, the SNR grows 

linearly with photocharge when this noise contributions 

dominate, which generally happens at low signals; 

- a signal dependent noise source associated to photocurrent shot 

noise: the SNR goes with the square root of the photocharge 

when this contribution dominates; 

- a signal dependent noise source associated to photoresponse 

nonuniformity. The SNR does not change with photocharge when 



 

this contribution dominates, which generally occurs at large 

signal. 

A sample plot of the SNR vs the photocharge is reported above. Note 

that this plot is NOT the photon transfer curve, though it is very 

similar to it in terms of content and information that it brings. 

At a charge value corresponding to the maximum charge that can be 
integrated in the photodiode (the value can be approximated to the 

product of the biasing voltage times the sum of the capacitances 

affecting the anode node), the signal saturates and the SNR looses 
meaning (dropping essentially to 0…). 

The DR can be quantified by looking at two points on the x-axis of 
this graph: the first point is the just mentioned situation where 

the pixel saturates. The second point is where the SNR equals 0 dB 

(unity). The ratio of the photocharges in these two situations gives 
the DR, as shown in the graph. In this example, the DR can be 

calculated as 20log10(3 10-15/2 10-18) = 62 dB. 

When using a 4T topology, we can expect 

(i) a reduction in the dark current due to the pinning effect of 

the pinned photodiode, reducing collected dark current from 

dirty interface regions; 
(ii) a consistent reduction of kTC noise, if correlated double 

sampling is used (this technique is indeed only effective in 
4T topologies). 

As a consequence, we can expect a better SNR in the signal-
independent region of the SNR. In the figure below, a factor 10 of 

reduction in dark current and in kTC noise is assumed as a 

qualitative example. The SNR grows by 20 dB in this region. 
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Question n. 2 

You have to design a Lorentz-force Z-axis 

MEMS magnetometer, like the one depicted in 

the figure. The frequency of the current flowing 

in the multi-loop recirculation path is slightly 

mismatched with respect to the resonant 

frequency of the structure. 

(i) Evaluate the sensitivity in terms of output 

voltage VOUT per unit magnetic field (in 

[V/T]), making reasonable assumptions for 

the unknown parameters. 

(ii)  Choose the input referred voltage noise 

density (Sv, in [V/√Hz]) of the readout 

operational amplifier, in order to obtain a 

well-balanced system in terms of noise. 

(iii) Choose the optimum number of bits of the 

ADC that you will place at the end of the 

electronic readout chain. 

(iv) After this first design stage, you notice that 

your resolution is not sufficient for the 

target application, but you are allowed to 

consume 50 µA more. Do you prefer to 

assign this additional current to the driving 

current or to the front-end amplifier input 

transistors? 

 

Physical Constants 

kb = 1.38 10-23 J/K 

T = 300 k 

 

 

  

  

Driving current 100 µArms 

Parallel plates length 300 µm 

# of parallel plates cells (whole structure) 10 

Process height 26 µm 

Parallel plates gap 1.5 µm 

Sensing bandwidth 50 Hz 

Stiffness (half structure) 60 N/m 

Resonant frequency 20 kHz 

Stator bias voltage 6 V 

# of current loops 10 

Spring length 800 µm 

Quality factor 3000 

Feedback capacitance 1 pF 

Parasitic capacitance at the sense node 15 pF 

Required full scale range ±5 mT 



 

(i) The expression of the sensitivity of a Lorentz force multi-

loop magnetometer driven with a current slightly mismatched 
from the device resonance is:  
 

𝑆 =
Δ𝑉𝑜𝑢𝑡

Δ𝐵
= 𝑖𝑝𝑒𝑎𝑘𝑁𝑙𝑜𝑜𝑝𝐿 ⋅

𝑄𝑒𝑓𝑓

2𝑘1/2
⋅

2𝐶0

𝑔
⋅

𝑉𝑏𝑖𝑎𝑠

𝐶𝑓
= 2.3

𝑉

𝑇
 

Where 𝑖𝑝𝑒𝑎𝑘 = √2 ⋅ 𝑖𝑟𝑚𝑠  is the peak value of the driving current, 

𝐶0 =
𝜖0𝐿𝑝𝑝𝐻𝑁𝑝𝑝

𝑔
  is the single-  ended rest capacitance of the 

whole structure, 𝑄𝑒𝑓𝑓 =
𝑓0

2Δ𝑓
 is the effective quality factor 

computed considering a reasonable mismatch value of 𝐵𝑊 ⋅ 3 =

150 𝐻𝑧, in order to satisfy the sensing  bandwidth 

requirements. 

 

(ii) A system can be assumed “well-balanced” in terms of noise if 
the two main noise contributions to the total noise (thermo-
mechanical and electronics) are comparable. For what 
concerns the device intrinsic noise, we know its expression: 

𝑁𝐸𝑀𝐷𝑖𝑛𝑡𝑟 =
4

𝑖𝐿𝑁𝑙𝑜𝑜𝑝
√𝑘𝐵𝑇𝑏 =

4

𝑖𝐿𝑁𝑙𝑜𝑜𝑝

√𝑘𝐵𝑇 ⋅
2𝑘1/2

𝜔0𝑄
 

 

On the other hand, the input-referred front-end electronics 

contribution, considering negligible the current noise of 

the opamp and the feedback resistance thermal noise, is equal 
to: 

𝑁𝐸𝑀𝐷𝑒𝑙𝑛 = √2𝑆𝑣 ⋅

(1 +
𝐶𝑝

𝐶𝑓
)

𝑆
 

 

(the factor 2 is due to the presence of two amplifiers). 

Equating the two contributions, we obtain 𝑆𝑣 = 13
𝑛𝑉

√𝐻𝑧
. 

 

 
(iii) In order to calculate in a straightforward way the number 

of bits to correctly quantize our signal, we just consider 
resolution and full-scale-range in terms of magnetic field. 
 
The required full-scale-range is given in the data, and it 
is equal to ±5 mT. The resolution can be obtained from the 
previously calculated noise density and from the bandwidth 
specification:  
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𝐵𝑚𝑖𝑛 = √(𝑁𝐸𝑀𝐷𝑒𝑙𝑛
2 + 𝑁𝐸𝑀𝐷𝑖𝑛𝑡𝑟

2 ) ⋅ 𝐵𝑊 = √2 ⋅ 𝑁𝐸𝑀𝐷𝑖𝑛𝑡𝑟 ⋅ √𝐵𝑊 = 1.28 𝜇𝑇 

 

And thus: 
 

2𝑁𝑏𝑖𝑡 =
𝐹𝑆𝑅

𝐵𝑚𝑖𝑛
=

10 𝑚𝑇

1.28 𝜇𝑇
→ 𝑁𝑏𝑖𝑡 = 13 

 
  

(iv) The most convenient choice is to assign the additional 
current to the MEMS driving. Indeed, we can note that both 

the 𝑁𝐸𝑀𝐷𝑖𝑛𝑡𝑟 (proportional to 
1

𝑖𝑝𝑒𝑎𝑘
) and 𝑁𝐸𝑀𝐷𝑒𝑙𝑛 (proportional 

to 
1

𝑆
 and thus to 

1

𝑖𝑝𝑒𝑎𝑘
) benefits from a drive current 

increasing. 
 
On the other hand, increasing the current in the electronics 

front-end would decrease the 𝑆𝑣 and consequently only the 
electronics contribution, leaving untouched the MEMS 
intrinsic noise.   
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 Question n. 3 

A MEMS gyroscope is designed with the parameters listed 

in the Table. Once fabricated, the gyroscope is subject to 

electromechanical characterization tests. 

(i) From the first test, the simple ringdown curves 

shown in Fig. 1, evaluate the natural resonance 

frequency and the Q factor of the two modes. 

(ii) The gyroscope is designed to operate with the 

circuit shown in Fig. 2. Calculate the gyroscope 

drive displacement. 

(iii) Estimate the gyroscope sensitivity (amplitude of the voltage VOUT per unit rate, in [V/dps]). 

(iv) As a final characterization test, you adopt the measurement scheme indicated in Fig. 3, where the 

amplitude va is set identical to the one obtained in operation. Draw a quoted graph of the amplitude 

of the voltage VOUT as a function of the frequency fa of the small actuation signal va. 

  

           

Drive frame mass 3∙10-9 kg 

Sense frame mass 10∙10-9 kg 

Drive CF capacitance 300 fF 

CF overlap length 13 µm 

Sense PP capacitance (s.e.) 180 fF 

PP gap 2 µm 

Reference drive voltage VREF 1.48 V 

In operation rotor voltage VDC 10 V 

Drive feedback capacitance CF 1 pF 

Sense feedback capacitance CFS 1 pF 

Maximum quadrature 1200 dps 

Fig. 2 Fig. 3 

Fig. 1 



 

(i) 

From the ringdown graph of each mode we can derive the resonance 
frequency and the quality factor. For the frequency, the relevant 

information is that appearing in the zoomed part of the image, 

where we find 11 periods in 500 µs for the drive mode, and 11.5 
periods in the same time for the sense mode. This gives us a 

resonant frequency of  

𝑓𝑑 =
11

500 𝜇𝑠
= 22 𝑘𝐻𝑧 

𝑓𝑠 =
11.5

500 𝜇𝑠
= 23 𝑘𝐻𝑧 

And in turn a native mode split of 1 kHz. The Q factors are easily 

identified from the ringdown time constant. Indeed we know that 
for a given mode at a resonance f0, the quality factor and the 

time constant are related through: 

𝜏 =
𝑄

𝜋 𝑓0
 

which yields (using the time constant values approximately found 
in the graphs) a value of 

𝑄𝑑 = 0.085 𝑠 ⋅ 𝜋 ⋅ 22 𝑘𝐻𝑧 ≈ 6000 

𝑄𝑠 = 0.015 𝑠 ⋅ 𝜋 ⋅ 23 𝑘𝐻𝑧 ≈ 1000 

 

(ii) 

We see that the circuit includes an AGC. Therefore, we know that 

the drive motion is regulated through the value of the reference 

voltage VREF. As we are using a charge amplifier configuration (it 
is the only configuration that satisfies the Barkhausen conditions 

with the shown building blocks of the drive loop), we know that 
the motion is transformed into a voltage in the secondary loop 

through the equation below: 

𝑉𝑜𝑢𝑡,𝐿𝑃𝐹 = 𝑖𝑚

1

𝜔𝑑𝐶𝐹

2

𝜋
= 𝜂𝑥𝜔𝑑

1

𝜔𝑑𝐶𝐹

2

𝜋
= 𝜂𝑥

1

𝐶𝐹

2

𝜋
 

 

where im is the motional current and 𝜂 is the transduction factor 

of the comb-finger capacitance of the drive mode. The secondary 

loop is a negative feedback that forces this voltage to match VREF. 
Therefore, we find: 

𝑥𝑑 =
𝑉𝑅𝐸𝐹𝐶𝐹

𝜂

𝜋

2
=

𝑉𝑅𝐸𝐹𝐶𝐹

𝑉𝑅𝑂𝑇 𝐶0𝑑/𝑥𝑜𝑙

𝜋

2
= 10 𝜇𝑚 
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(iii) 

The gyroscope sensitivity in mode-split operation is found as: 

Δ𝑉𝑜𝑢𝑡

Ω
= 2 ⋅

𝐶0𝑠

𝑔
⋅

𝑉𝑅𝑂𝑇

𝐶𝐹𝑆
⋅

𝑥𝑑

Δ𝜔
 

Apparently, we have all the parameters to do this calculation. 

However, the exact split value needs to take into account not the 

natural frequencies, but the actual frequencies in operation. Due 
to the presence of the rotor voltage, the sense mode is subject to 

electrostatic softening, whose equivalent stiffness is given by: 

𝑘𝑒𝑙𝑒𝑐 = −2𝑉𝑟𝑜𝑡
2

𝐶0𝑠

𝑔2
= −9 𝑁/𝑚 

We thus need to add this value to the mechanical stiffness, given 
by: 

𝜔𝑠 = √
𝑘𝑠

𝑚𝑠
   →   𝑘𝑠 = 𝜔𝑠

2𝑚𝑠 = 209
𝑁

𝑚
   

To obtain the actual mechanical stiffness of the sense mode of 200 

N/m. This gives an in-operation frequency of 22.5 kHz, and thus a 
split value of 500 Hz. With this number, the differential 

sensitivity becomes 

Δ𝑉𝑜𝑢𝑡

Ω
= 2 ⋅

𝐶0𝑠

𝑔
⋅

𝑉𝑅𝑂𝑇

𝐶𝐹𝑆
⋅

𝑥𝑑

Δ𝜔
= 2 ⋅

180 𝑓𝐹

2 𝜇𝑚
⋅

10 𝑉

1 𝑝𝐹
⋅

10 𝜇𝑚

2 π 500 Hz
= 5.8

𝑚𝑉

𝑟𝑎𝑑/𝑠
 

 

Which is more conveniently given in units of dps as 

Δ𝑉𝑜𝑢𝑡

Ω 𝑑𝑝𝑠
=

Δ𝑉𝑜𝑢𝑡

Ω

𝜋

180
= 100

𝜇𝑉

𝑑𝑝𝑠
 

 

(iv) 

We assume the amplitude of the voltage va to match the first 

harmonic of the square wave in operation. Further, we assume no 
angular rate applied during this characterization phase. The only 

contribution that links the drive and sense motion is quadrature. 

For low frequencies, the drive mode will move much less that for 

resonant motion. When passing through the drive frequency, the 

drive mode will see its maximum displacement (which at resonance 
matches exactly the one in operation). 



 

In absence of 

quadrature, nothing 

relates the drive and 
sense motion. In 

presence of quadrature, 

the output voltage for 
a signal va at the 

drive mode frequency 
will match the product 

of the sensitivity 

calculated above times 
the input-referred 

quadrature, so:  

Δ𝑉𝑜𝑢𝑡,𝜔𝑑
= 1200 𝑑𝑝𝑠 ⋅ 100

𝜇𝑉

𝑑𝑝𝑠
= 0.12 𝑉 

When moving forward in frequency the signal va, we pass also 
through the sense frequency. Here the drive motion will be lower 

with respect to the case above by a factor equal to Qeff/Qd. 
However, the quadrature force will be now amplified by the full Q 

factor of the sense mode, and thus increased by a factor Qs/Qeff. 

As a consequence, the output voltage can be easily quantified as 
the voltage calculated above, multiplied by a factor Qs/Qd.: 

Δ𝑉𝑜𝑢𝑡,𝜔𝑠
= 0.12 𝑉 ⋅

𝑄𝑠

𝑄𝑑
= 0.02 𝑉 

(as an alternative solution, the full equations of the drive and 

sense modes could be used for this calculation, which explains the 
presence of the drive mass in the data of the exercise). The graph 

above reports thus the required plot. 

This technique is commonly used to characterize quadrature in 

gyroscopes at wafer level. 


