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Question n. 1 

The structure shown aside was conceived by Prof. Nguyen 

and Prof. Howe at UC Berkeley to demonstrate one of the 

first, high-Q, MEMS-based oscillators in 1999. 

Describe, with detailed justifications, the structural parts 

that form it and the choices adopted for its design, the 

proper biasing and driving conditions at the three ports, its 

electrical equivalent circuit with possible parasitics, and the 

conditions that the sustaining circuit needs to satisfy for 

proper resonant operation. 

You can assist yourself with graphs, block schemes, or 

circuit schematics, where useful. 

 

Structural parts and design choices: 

The resonator is designed in the so-called 3-port configuration, the first port being an anchored comb 

actuator, the second being the suspended mass of the resonator, the third port being an anchored comb 

sensor. 

The mass is suspended, in this specific implementation, by using folded springs with identical fold length to 

best reject temperature effects. 

The actuation and driving ports are configured with comb fingers to maximize linearity at large motion 

amplitudes (this is e.g. required in applications where large motion is inherently desired, like in drive modes 

of gyroscopes), and to minimize damping losses, typical of parallel-plate configurations, which would lower 

the quality factor. 

 

Biasing conditions: 

We know that the applied electrostatic force on a MEMS capacitor is quadratic with the 

applied voltage. By just applying a sinusoidal stimulus at the resonance frequency to the 

drive port, we would obtain a force at twice that frequency, because of the square 

rectification. This would not work within a self-sustaining loop… 

A simple solution consists in biasing the proof mass at a voltage much larger than the amplitude of the 

sinusoidal stimulus, with the sensor port kept at a (virtual) ground for current sensing, so to obtain a 

linearization as given by the expression below: 

|𝐹𝑒𝑙𝑒𝑐| =
𝜀0ℎ 𝑁𝐶𝐹

𝑔
[(𝑣𝑎 𝑠𝑖𝑛(𝜔0𝑡))2 + 2𝑉𝐷𝐶𝑣𝑎 𝑠𝑖𝑛(𝜔0𝑡) + 𝑉𝐷𝐶

2 − 𝑉𝐷𝐶
2 ]~

𝜀0ℎ 𝑁𝐶𝐹

𝑔
2𝑉𝐷𝐶𝑣𝑎 𝑠𝑖𝑛(𝜔0𝑡) 

(𝑁𝐶𝐹 is the number of comb fingers per port, ℎ the process height, 𝑔 the fingers gap and 𝜔0 is the resonance 

frequency). 

 

Electrical equivalent circuit: 

Seen as a black box, the resonator receives a voltage at its input and outputs a current. It can be therefore 

represented by an equivalent electrical admittance, just by taking the ratio of the output current to the input 



 

voltage. For the sake of simplicity, the factor 
𝜀0ℎ 𝑁𝐶𝐹

𝑔
2𝑉𝐷𝐶 is named electrostatic transduction factor 𝜂 and 

represents both the coefficient between applied voltage and corresponding (linearized) electrostatic force, 

and the coefficient between the suspended mass velocity and the corresponding output current. If we now 

just add the relationship between a generic force applied to a MEMS suspended part, and its corresponding 

motion: 

𝐹𝑒𝑙𝑒𝑐(𝑠)

𝑉𝑎 (𝑠)
= 𝜂,         

𝑖𝑚(𝑠)

𝑠𝑋(𝑠)
= 𝜂   

𝑋(𝑠)

𝐹𝑒𝑙𝑒𝑐(𝑠)
=

1/𝑚

(𝑠2+
𝑏

𝑚
𝑠+

𝑘

𝑚
)
  

we can obtain the final expression of the equivalent admittance: 

𝑖𝑚(𝑠)

𝑉𝑎 (𝑠)
= 𝜂2 𝑠

(𝑚𝑠2+𝑏𝑠+𝑘)
  

We note at this point that this expression is in the same form of a series RLC resonator. We can therefore 

model our 3-port MEMS resonator as a series equivalent RLC circuit with parameters given by: 

𝑖𝑚(𝑠)

𝑉𝑎 (𝑠)
=

𝑠

(𝐿𝑒𝑞𝑠2+𝑅𝑒𝑞𝑠+
1

𝐶𝑒𝑞
)
  

𝐶𝑒𝑞 =
𝜂2

𝑘
 𝑅𝑒𝑞 =

𝑏

𝜂2 𝐿𝑒𝑞 =
𝑚

𝜂2 

The admittance is maximized at resonance, which means that 

the equivalent resistance is minimized, as in the shown graph. 

Additionally, the series circuit representation seen aside is only 

apparently a 2-port system, indeed the third port (i.e. the rotor 

DC voltage) determines the value of 𝜂 and thus of the electrical 

equivalent parameters. 

 

Oscillator conditions: 

In order to have a self-sustained oscillation, a circuit must be used 

to provide a compensation of the residual resistive losses at resonance (the equivalent impedance is 

minimized, but not null at 𝜔0!). There are different possible implementations, depending on which front-end 

topology is used (e.g. a trans-resistance or a trans-capacitance amplifier): whatever the choice, the conditions 

to satisfy for stable oscillation are the so-called Barkhausen criteria: 

|𝐺𝑙𝑜𝑜𝑝(𝑗𝜔0)| = 1 = 0 𝑑𝐵 ∡ (𝐺𝑙𝑜𝑜𝑝(𝑗𝜔0)) = 0° 

stating that a self-sustained signal should have a unitary gain and no phase lag after a complete turn-around 

across the oscillator loop (which is somewhat obvious). Note that this condition is ideally satisfied for just one 

specific, ideal, value of the circuit gain (corresponding to 𝑅𝑒𝑞). With lower circuit gains the oscillation would 

never start; for larger circuit gains the oscillation would diverge. The solution adopted to obtain a stable 

oscillation is, in general, to have a circuit gain which is larger than needed for the start-up, and which is then 

adjusted by a nonlinearity in the loop (in the simplest case, the saturation of the amplifiers), so to match the 

ideal condition of unitary gain. 

A more realistic electrical model, in presence of parasitics, is represented aside. 

Among the added parasitics, the most critical one is the capacitance feeding 

directly through from the drive port to the sense port. Indeed, it adds a direct 

current contribution which can be critical for the sustaining circuitry, as it may 

add other undesired frequencies that satisfy the resonant condition.   
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Question n. 2 

You need to finalize the design of an accelerometer targeting the detection of input signals up to 500 Hz. 

Using the readout scheme depicted in the figure and the parameters listed in the table, you are asked to: 

- choose a proper Q factor, in order to reach a 𝑁𝐸𝐴𝐷 ≤ 50𝜇𝑔/√𝐻𝑧; 

- knowing that electronic noise is dominated by the voltage noise of the differential input pair of the 

two amplifiers, estimate the required current consumption of the front-end stage, in order to have 

an input-referred electronic noise density contribution equal to 
𝑁𝐸𝐴𝐷

4
; 

- choose the best among two possible technological improvements: (i) halving the minimum gap or (ii) 

doubling the process height. Discuss in deep details the motivations of your choice as a function of 

relevant parameters of MEMS accelerometers. 

                                                                                                                                                                 

 

 

                                                                                                                                                                                                          Physical Constants 

q = 1.6 10-19 C 

kb = 1.38 10-23 J/K 

T = 300 K (if not specified) 

ε0 = 8.85 10-12 F/m 

 

 

Starting from the provided data, the resonant frequency value can be derived: 

𝜔0 = √
𝑘𝑡𝑜𝑡

𝑚
= 12.6 𝑘𝑟𝑎𝑑/𝑠 

The noise equivalent acceleration density can be written as: 

𝑁𝐸𝐴𝐷 = √
4𝑘𝑏𝑇𝜔0

𝑄𝑚
 

So, the minimum value of the quality factor in order to satisfy noise requirements is equal to: 

𝑄𝑚𝑖𝑛 =
4𝑘𝑏𝑇 𝜔0

(𝑁𝐸𝐴𝐷)2𝑚
= 0.1 

Such a low value is not suitable for large-bandwidth applications. We know this from theory, but we can 

estimate the lower pole position starting from the transfer function between force and displacement: 

Accelerometer total stiffness 𝑘𝑡𝑜𝑡 1.4 N/m 

Accelerometer total mass 𝑚 8.8 NKg 

Differential capacitive sensitivity 𝑆𝑚𝑒𝑐ℎ  7 fF/g 

Readout feedback capacitance 𝐶𝑓 0.5 pF 

Parasitic input capacitance 𝐶𝑝 3 pF 

Rotor modulation voltage amplitude 𝑉𝑚𝑜𝑑  1 V 

Input-pair MOS overdrive voltage 𝑉𝑜𝑣  0.1 V 

MOS transistor γ coefficient γ 2/3 - 



 

𝑇𝑋𝐹 =
1

𝑚
⋅

1

𝑠2 + 𝑠 ⋅
𝜔0
𝑄

+ 𝜔0

 

Using a dominant pole approximation, the first pole has 𝜏 =
1

𝑄𝜔0
 and thus 𝑓𝑝𝑜𝑙𝑒 ∼ 200𝐻𝑧.  

We have input signals up to 500Hz: a reasonable solution is to set a slightly higher quality factor, e.g. Q = 

0.5. In this case: 

𝑁𝐸𝐴𝐷 = 22
𝜇𝑔

√𝐻𝑧
  

The sensitivity of our system can be evaluated as: 

𝑆 = 𝑆𝑚𝑒𝑐ℎ

𝑉𝑚𝑜𝑑

𝐶𝑓
 = 14

𝑚𝑉

𝑔
  

Knowing this parameter, we can write down the expression of the input-referred voltage noise of the 

operational amplifiers and impose it equal to 
𝑁𝐸𝐴𝐷

4
. 

√𝑆𝑣,𝑖𝑛 =
√2𝑆𝑣 (1 +

𝐶𝑝

𝐶𝑓
)

𝑆
=

𝑁𝐸𝐴𝐷

4
 

In an operational amplifier, the input-referred voltage noise generated by the input differential pair is equal 

to: 

𝑆𝑣 = 2 ⋅
4𝑘𝑏𝑇𝛾

𝑔𝑚
 

  Where:  

𝑔𝑚 =
2𝐼𝐷

𝑉𝑜𝑣
 

Where 𝐼𝐷 is the current flowing in the single MOS transistor of the differential pair. We can now finally 

evaluate the total current consumption of the front-end electronics: 

𝐼𝑓𝑟𝑜𝑛𝑡−𝑒𝑛𝑑 = 4 ⋅ 𝐼𝐷 = 4 ⋅
4𝑘𝑏𝑇𝛾𝑉𝑜𝑣

1
2 (

𝑁𝐸𝐴𝐷
4 𝑆

1 +
𝐶𝑝

𝐶𝑓

)

2 = 71𝜇𝐴 

 

The choice between the two technological improvements can be motivated by the analysis of their 

influence on the most important parameters in a MEMS accelerometer: sensitivity, pull-in voltage and 

noise. 

For what concerns the sensitivity: 

𝑆 =
1

𝜔0
2

𝐶0

𝑔
=

1

𝜔0
2

𝑒0𝐻𝐿𝑝𝑝

𝑔2
  

Both solutions improve sensitivity, raising H by a factor 2 and halving the minimum gap by a factor 4. 

Let’s take a look to the pull-in voltage expression: 
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𝑉𝑃𝐼 = √
𝑘𝑔3

2𝜖0𝐻𝐿𝑝𝑝𝑁𝑃𝑃
  

Remembering that the mechanical stiffness is directly proportional to the process height, we can conclude 

that the pull-in voltage is constant with H. On the other hand, 𝑉𝑃𝐼 goes with 𝑔
3

2: a lower gap get the system 

closer to instability. 

At last, we can evaluate the effect on the thermomechanical contribution to the resolution: 

𝑁𝐸𝐴𝐷 = √
4𝑘𝑏𝑇𝜔0

𝑄𝑚
= √

4𝑘𝑏𝑇𝑏

𝑚2
 

Due to squeezed-film damping, a gap reduction will slightly increase the b coefficient, and consequently, 

the NEAD. Conversely, a doubled H will increase damping coefficient by a factor 2 and the mass by a factor 

4, improving the NEAD by a factor 
1

√2
. 

Knowing that the limit to the system resolution is the thermomechanical noise of the MEMS device, a 

process height improvement is the smarter solution.   
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Question n. 3 

You are working in a company developing innovative CMOS sensors with the aim of reaching single-photon 

counting capabilities. The technology is based on standard 4T topology with pinned photodiode and 

correlated double sampling (CDS) circuit. The pixel parameters are listed in the table. 

- calculate the required reset-noise-rejection factor for the CDS circuit to have identical contributions 

from reset noise and dark current shot noise at an integration time of 1 ms; 

- assuming no signal, calculate the minimum number of electrons that can be measured for the 

integration time above; 

- calculate the pixel dynamic range for the integration time above; 

- discuss about the fundamental limit in measuring charges that can be accomplished with this pixel 

topology (suggestion to start: calculate the SNR for the case of a single collected photon). 

 

 

 

Physical Constants 

q = 1.6 10-19 C 

kb = 1.38 10-23 J/K 

T = 300 K (if not specified) 

ε0 = 8.85 10-12 F/m 

εSi = 11.7 ε0 

 

The dark current of the detector can be evaluated as 

𝑖𝑑𝑎𝑟𝑘 = 𝑗𝑑𝑎𝑟𝑘𝐴𝑃𝐷 = 𝑗𝑑𝑎𝑟𝑘 ⋅ 𝐹𝐹 ⋅ 𝑙𝑝𝑖𝑥
2 = 9 aA 

The floating diffusion capacitance can be evaluated as 

𝐶𝐹𝐷 = 𝜀𝑆𝑖

𝑙𝐹𝐷
2

𝑥𝑑𝑒𝑝,𝐹𝐷
= 51.7 aF 

comparable with the one of the source follower (100 aF). The total integration capacitance can be thus 

evaluated as 

𝐶𝑖𝑛𝑡 = 𝐶𝐹𝐷 + 𝐶𝐺,𝑆𝐹 = 152 aF 

Intrinsic reset noise (i.e., without CDS) can be estimated as 

𝜎𝑟𝑒𝑠𝑒𝑡 =
√𝑘𝐵𝑇𝐶𝑖𝑛𝑡

𝑞
= 4.9 e 

Dark current shot noise can be estimated as 

𝜎𝑑𝑎𝑟𝑘 = √
𝑖𝑑𝑎𝑟𝑘𝑡𝑖𝑛𝑡

𝑞
= 0.23 e 

Pixel side 3 µm 

Pinned photodiode depletion region 3 µm 

Floating diffusion side 0.5 µm 

Floating diffusion depletion region 0.5 µm 

Fill factor 0.5 - 

Source follower gate capacitance 0.1 fF 

Bulk dark current density 2 aA/µm2 

Bias voltage 2 V 
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The required reset-noise-rejection factor for the CDS to have identical contributions for reset noise and dark 

current shot noise can be thus evaluated as 

𝑅𝐹 =
𝜎𝑟𝑒𝑠𝑒𝑡

𝜎𝑑𝑎𝑟𝑘
= 20 

 

Assuming no signal, the minimum number of electrons that can be measured is 

𝑁𝑚𝑖𝑛 = 𝜎𝑟𝑒𝑎𝑑 = √
𝜎𝑟𝑒𝑠𝑒𝑡

2

𝑅𝐹2
+ 𝜎𝑑𝑎𝑟𝑘

2 = √2𝜎𝑑𝑎𝑟𝑘 = 0.32 e 

 

The dynamic range can be estimated as 

𝐷𝑅 =
𝑁𝑚𝑎𝑥

𝑁𝑚𝑖𝑛
=

𝑉𝐷𝐷𝐶𝑖𝑛𝑡
𝑞

0.32 e
=

1897 e

0.32 e
= 5656 

i.e., 75 dB. 

 

The minimum detectable signal due to readout electronic noise only is 0.32 electrons. 

However, if we consider the signal with its associated shot noise, we know that, due to Poisson-like statistics 

of photon flux, the variance of the number of collected photons is equal to the number of photons. Hence the 

standard deviation, with unity signal, is unity as well: 

𝜎𝑠ℎ𝑜𝑡 = √𝜎𝑠ℎ𝑜𝑡
2 = √𝑁 = √1 = 1 

The signal-to-noise ratio can be thus roughly described as 

𝑆𝑁𝑅 =
𝑁

𝜎𝑡𝑜𝑡
=  

𝑁

√𝜎𝑠ℎ𝑜𝑡
2 + 𝜎𝑟𝑒𝑎𝑑

2

≃
1

1 + 𝜀
≃ 1 

The pixel is thus conceptually capable to reach single-photon counting capabilities. 

  



 

 


