Question n. 1

You are a designer of in-plane MEMS accelerometers, with the specific task of improving the sensitivity to accelerations. Due to budget limitations, you can ask to process engineers only one of the following possible process improvements:

1 - decrease of the process gap
2 - increase of the process thickness
3 - decrease of the minimum spring width
Which one would you choose? Motivate in details your choice. You can help yourself with formulas or graphs.

The sensitivity of a MEMS accelerometer can be first seen as the ratio between the suspended mass displacement x and the occurring acceleration $a_{\text {ext }}$. One easily notes that the unique parameter that appears in the formula is the resonance frequency:

$$
\frac{x}{a_{e x t}}=\frac{1}{\omega_{0}^{2}}
$$

At a deeper level however, one should consider the way the MEMS is coupled to the circuit, and the arising electrostatic force. In the simplest situation of a charge amplifier readout, one can develop the sensitivity equation to write the output voltage vs input acceleration:

$$
\frac{x}{a_{\text {ext }}}=\frac{m}{\left(k-2 V_{D D}^{2} \frac{C_{0}}{g^{2}}\right)} \rightarrow \frac{\Delta V_{\text {out }}}{a_{\text {ext }}}=2 V_{D D} \frac{C_{0}}{C_{f}} \frac{1}{g} \frac{m}{\left(k-2 V_{D D}^{2} \frac{C_{0}}{g^{2}}\right)}
$$

In view of the derived formulas we can make the following comments:
1- decrease of the process gap
As in all parallel-plate sensing configuration, the sensitivity at first order improves with the inverse of the squared gap, $\left(C_{0} / g\right)$. This seems thus to be a quite advantageous option.

However, for devices with relatively low stiffness like accelerometers, there is a second-order effect, highlighted at the denominator by the formula above, which is the change in the stiffness and resonance frequency induced by electrostatic forces. This effect is as well a function of the gap. A lower gap may thus become critical for pull-in issues in the considered voltage-controlled readout.

Further, a decrease in the gap also reduces the displacement linearity range. So, in order to remain within maximum allowed displacement one would need to increase the stiffness, in turn reducing the sensitivity...

2 - increase of the process thickness
An increase in the thickness h directly implies an increase in the rest capacitance $\boldsymbol{C}_{\mathbf{0}}$. This turns into a linear increase in the sensitivity. It appears thus as a good option.

Let us verify the dependence of the pull-in voltage on this parameter for an in-plane accelerometer. The expression is given below:

$$
V_{D D, P I}=\sqrt{\frac{g^{2} k}{2 C_{0}}}=\sqrt{\frac{g^{3} E \alpha h w^{3} / L^{3}}{2 \varepsilon_{0} L_{P P} h N_{P P}}}
$$

One can note that the pull-in voltage includes itself a term related to $\boldsymbol{C}_{\mathbf{0}}$; however, it also includes the elastic stiffness \boldsymbol{k}. Developing the formula for the case of in-plane motion springs, one will note the linear dependence of k on h. Therefore, the pull-in voltage turns out to be independent on the process thickness!

Linearity is as well independent on this parameter. So, there is no drawback in increasing \boldsymbol{h}, with the mentioned positive effect of increasing linearly the sensitivity.

3 - decrease in the springs width
A decrease in the springs width directly determines a decrease in the spring stiffness. This is apparently advantageous in terms of sensitivity. However, once more, the pull-in voltage is strongly dependent on \boldsymbol{w} and more in general on the spring stiffness (see the formula above).

We can therefore conclude that the best choice is likely to ask for an increase in the process height. There are a few final comments/exceptions that deserve to be given, for alternative accelerometers configurations:

A - in case we adopted a comb finger solution, we would be void of pull-in and linearity issues. In this situation a choice of gap decrease would not be subject to those issues. However, the sensitivity gain would go with the inverse of the gap, and not with the inverse of the squared gap! In turn, the gain would be (at first order) linear with the gap decrease, exactly as it is linear with the thickness increase. So, there would be no specific advantage in choosing either of the two process changes.

B - if we adopted an equivalent charge-controlled readout (e.g. based on switched capacitors), the sensitivity formula would become:

$$
\frac{\Delta V_{o u t}}{a_{\text {ext }}}=\frac{V_{D D}}{\omega_{0}^{2} g}=\frac{V_{D D} m}{k g}
$$

Which clearly states that in this case - contrarily to the discussion above - we would have advantages in changing the gap g rather than in changing the height (h does not appear in the formula as both m and k are linear with this term)! No pull-in and linearity issues exist in this situation. This is a very nice example of how when you design a MEMS and/or you develop a process - you should always take into account the cointeraction between device and chose electronic readout scheme!

For both situations A and B, decreasing the minimum width w - though advantageous as no pull-in/linearity issues are present - will likely face process repeatability issues.

Question n. 2

You are taking a picture with a camera equipped with a 3T CMOS image sensor. The sensor works with a 1.8 V supply voltage. Each pixel, $1.5 \mu \mathrm{~m}$ wide, has a 50% fill factor and an overall quantum efficiency of 0.5 . The dark current is 0.3 fA . The average photodiode capacitance is 1 fF , while the input capacitance of the source follower is 0.5 fF .

1) The brightest pixel of the scene features an input photon flux of $2 \cdot 10^{18} \mathrm{ph} / \mathrm{m}^{2}$. Which integration time would you choose in order to maximize the signal-to-noise ratio of the acquisition?
2) How much is the dynamic range at the chosen integration time?

You are equipped with another camera, which features a 4T CMOS sensor. Each pixel (again with a $1.5 \mu \mathrm{~m}$ size) is based on a pinned photodiode, a transfer gate (of negligible area), and the same in-pixel electronics, and implements correlated double sampling. The capacitance of the floating diffusion can be neglected.
3) Which integration time would you now choose in order to maximize the signal-to-noise ratio of the acquisition?
4) With the chosen integration time, evaluate the improvement/worsening of the dynamic range (expressed in dB) with respect to the 3 T topology.

$$
\begin{array}{r}
\text { Physical Constants } \\
\mathrm{q}=1.610^{-19} \mathrm{C} \\
k_{b}=1.3810^{-23} \mathrm{~J} / \mathrm{K} \\
\mathrm{~T}=300 \mathrm{~K}(\text { if not specified }) \\
\varepsilon_{0}=8.8510^{-12} \mathrm{~F} / \mathrm{m} \\
\varepsilon_{r, S \mathrm{~S}}=11.7
\end{array}
$$

The photocurrent of the brightest pixel can be calculated as

$$
i_{p h}=q \cdot \eta \cdot F F \cdot l_{p i x}^{2} \cdot \phi_{p h}=180 \mathrm{fA}
$$

The maximum charge that can be integrated is

$$
Q_{\max , 3 T}=V_{D D} \cdot C_{i n t}=V_{D D} \cdot\left(C_{P D}+C_{S F}\right)=2.7 \mathrm{fC}
$$

which corresponds to 16875 electrons. Both the photodiode capacitance and the source follower capacitance should be considered to determine the overall integration capacitance.

One can chose the maximum integration time as the one that sets the brighter pixel close to saturation:

$$
i_{p h} t_{i n t, 3 T}=Q_{\max , 3 T} \rightarrow t_{i n t, 3 T}=\frac{Q_{\max , 3 T}}{i_{p h}}=15 \mathrm{~ms}
$$

With this integration time, the dynamic range, expressed in terms of number of electrons, is

$$
D R=20 \log _{10} \frac{\frac{i_{p h} t_{i n t, 3 T}}{q}}{\sqrt{\frac{k T C_{i n t}}{q^{2}}+\frac{i_{d} t_{i n t}}{q}}}=20 \log _{10} \frac{16875}{\sqrt{15.6^{2}+5.3^{2}}}=20 \log _{10} \frac{16875}{16.4}=60 \mathrm{~dB}
$$

As the 4T transistor features same in-pixel electronics and negligible area transfer gate, the pinned diode area is the same and the fill factor is 50%. Hence, the photocurrent is the same as before.

The maximum charge that can be integrated is

$$
Q_{\max , 4 T}=V_{D D} \cdot C_{i n t}=V_{D D} \cdot C_{S F}=0.9 \mathrm{fC}
$$

which corresponds to 5625 electrons. Floating diffusion capacitance was neglected, as suggested in the text.

Again, one can chose the maximum integration time as the one that sets the brighter pixel close to saturation:

$$
i_{p h} t_{i n t, 4 T}=Q_{\max , 4 T} \rightarrow t_{i n t, 4 T}=\frac{Q_{\max , 4 T}}{i_{p h}}=5 \mathrm{~ms}
$$

With this integration time, considering that the sensor implements correlated double sampling (i.e. no kTC noise), the dynamic range, expressed in terms of number of electrons, is

$$
D R=20 \log _{10} \frac{\frac{i_{p h} t_{i n t, 4 T}}{q}}{\sqrt{\frac{i_{d} t_{i n t}}{q}}}=20 \log _{10} \frac{5625}{3}=65 \mathrm{~dB}
$$

This means that the 4 T sensor enables a 5 dB increase of the dynamic range.
One should note that, in reality, the increase will be even higher, since pinned diode structures usually enable lower dark currents. With a typical 10x reduction of the dark current, an additional 10 dB increase of the dynamic range is obtained.

Last Name: _Foglio_ Given Name: Candido ID number: 20160217

Last Name: _Foglio_ Given Name: Candido ID number: 20160217

Question n. 3

Consider the Z-axis, dual-mass, tuning-fork gyroscope structure shown in the figure below. The structure is actuated via comb fingers along the drive mode, and senses Coriolis induced displacements through differential parallel plates along the sense mode. The gyroscope is biased with a DC voltage applied to the rotor (suspended mass) and an AC sine voltage applied to the driving stators. The drive-detection stators and the sense stators are kept at 0 V through virtual grounds. Relevant parameters are given in the Table below.

1) Choose the values of the $D C$ and $A C$ voltage to apply, in order to obtain a drive mode displacement of $5 \mu \mathrm{~m}$.
2) Calculate the sensitivity in terms of sense mode displacement y per unit angular rate Ω; then in terms of differential capacitance variation $\Delta C_{\text {diff }}$ per unit angular rate; finally in terms of output voltage change $\Delta V_{\text {out }}$ per unit rate, assuming a differential sense frontend based on charge amplifiers (feedback capacitance C_{F}), a further differential amplifier with a gain $G_{I N A}$, and a demodulation followed by a low-pass filter.
3) Evaluate the maximum measurable angular rate that guarantees a linearity error $<0.2 \%$. Estimate then the supply voltage $\pm \mathrm{V}_{D D}$ required by the amplifiers of the sense chain to match the maximum rate.
4) Choose (with motivations) the frequency of the $2^{\text {nd }}$ order low-pass filter, so to filter out the undesired peak corresponding to the mode-split frequency.

Parameter	Symbol	Value
Process thickness	h	$20 \mu \mathrm{~m}$
Process Gap	g	$2 \mu \mathrm{~m}$
Young's modulus	E	168 GPa
Permittivity of vacuum	ε_{o}	$8.8510^{-12} \mathrm{~F} / \mathrm{m}$
Drive mode		
Drive frame mass	m_{D}	$2.710^{-9} \mathrm{~kg}$
Number of comb fingers	$N_{C F}$	60
Spring fold length	L_{F}	$149 \mu \mathrm{~m}$
Spring fold width	w_{F}	$3.4 \mu \mathrm{~m}$
Quality factor	Q_{D}	5000
Sense mode		
Sense frame mass	m_{S}	$3.210^{-9} \mathrm{~kg}$
Elastic stiffness	k_{S}	$33 \mathrm{~N} / \mathrm{m}$
Parallel-plate length	$L_{P P}$	$198 \mu \mathrm{~m}$
Parallel-plate cell number	$N_{P P}$	10
Quality factor	Q_{S}	200
Electronics		
Feedback capacitance	C_{F}	0.5 pF
Amplifier gain	$G_{I N A}$	20
Low-pass-filter slope	$L P F$	$-40 \mathrm{~dB} / \mathrm{dec}$

5) Finally, evaluate the percentage variation in the sensitivity under temperature changes of $\pm 60^{\circ} \mathrm{C}$, with respect to the value calculated at point 3) above.
6) The picture represents a differential gyroscope based on a tuning fork. The geometry relies on a doubly decoupled architecture. Start with the forces balance, in particular the balance of the elastic force and electrostatic force, at resonance:

$$
k_{d} \cdot x=F_{\text {elec }, \text { tot }} \cdot Q_{d}
$$

Then, find the missing parameter k_{d}. Focus on the left half of the device: note 2 springs (drive spring), with 3 folds. On the inner side, note 2 springs (tuning fork) with 3 folds each: the middle point of the entire tuning fork is "virtually fixed" thanks to the action-reaction principle. Thus, 4 springs (number of springs $\mathrm{N}_{s}=4$) with 3 folds (number of folds $\mathrm{N}_{\mathrm{f}}=3$) are connected to the drive frame. So, the total elastic stiffness is

$$
k_{d}=E \frac{N_{s}}{N_{f}} h\left(\frac{w_{F}}{L_{F}}\right)^{3}=53 \mathrm{~N} / \mathrm{m}
$$

Two different contributions give the total electrostatic force: the former is by the driveactuation comb finger stator, the latter is by the drive-detection comb finger stator.

$$
F_{\text {elec }, \text { tot }}=\varepsilon_{0} N_{C F} \frac{h}{g}\left(V_{D C}-v_{a c}\right)^{2}-\varepsilon_{0} N_{C F} \frac{h}{g} V_{D C} \xrightarrow{2} \xrightarrow{v_{a c}<2 V_{D C}} F_{\text {elec }, \text { tot }}=\varepsilon_{0} N_{C F} \frac{h}{g} 2 V_{D C} v_{A C}
$$

In general and as a rule of thumb, "much-greater" or "much-lower" means one order of magnitude $(1 \ll 10)$, thus $v_{A C}=V_{D C} / 5$. Then,

$$
V_{D C} v_{A C}=5 v_{A C}^{2}=x \frac{k_{d}}{Q_{d}} \frac{1}{2 \varepsilon_{0} N_{C F} \frac{h}{g}} \rightarrow v_{A C}=1.0012 \mathrm{~V}, \quad V_{D C}=5.0061 \mathrm{~V}
$$

All the solutions that reasonably guarantee the condition $v_{a c} \ll 2 V_{D C}$ are considered correct. Reasonably means that too large voltages (e.g. > 20 V) would be challenging to generate.
2) The sensitivity in terms of sense mode displacement y per unit angular rate Ω is given by

$$
\frac{y}{\Omega}=\frac{x}{\Delta \omega}
$$

We need first to check whether the device is operating at resonance or in mode-split conditions. So, we first find the two fundamental resonance frequencies. For the drive mode

$$
\omega_{d}=\sqrt{\frac{k_{d}}{m_{d}+m_{s}}}=95 \frac{\mathrm{krad}}{s} \quad f_{d}=15117 \mathrm{~Hz}
$$

For the sense mode, we need to take into account effects of electrostatic softening:

$$
\begin{gathered}
k_{e l}=-2 \varepsilon_{0} N_{P P} \frac{h L_{P P}}{g^{3}} V_{D C}^{2}=-2.2 \frac{\mathrm{~N}}{\mathrm{~m}} \quad \rightarrow \quad k_{s, 0}=k_{s}+k_{e l}=30.8 \frac{\mathrm{~N}}{\mathrm{~m}} \\
\omega_{s}=\sqrt{\frac{k_{s, 0}}{m_{s}}}=98 \frac{\mathrm{krad}}{\mathrm{~s}}, \quad f_{s}=15615 \mathrm{~Hz} \\
\Delta \omega=\omega_{s}-\omega_{d}=3130 \frac{\mathrm{rad}}{\mathrm{~s}}, \quad \Delta f=f_{s}-f_{d}=498 \mathrm{~Hz} \\
\frac{\Delta y}{\Delta \Omega}=\frac{x}{\Delta \omega}=1.6 \frac{\mathrm{~nm}}{\mathrm{rad} / \mathrm{s}}=28 \frac{\mathrm{pm}}{\% / \mathrm{s}}
\end{gathered}
$$

The sensitivity in terms of differential capacitance variation $\Delta \mathrm{C}_{\text {diff }}$ per unit angular rate is given by (a further factor 2 is due to the other "half" of the device):

$$
\frac{\Delta \mathrm{C}_{\text {diff }}}{\Omega}=2 \cdot 2 \varepsilon_{0} N_{P P} \frac{h L_{P P}}{g^{2}} \frac{\Delta y}{\Delta \Omega}=0.56 \frac{f F}{\frac{r a d}{s}}=9.8 \frac{a F}{\circ / \mathrm{s}}
$$

Finally, the sensitivity in terms of output voltage change $\Delta \mathrm{V}_{\text {out }}$ per unit rate is given by

$$
\frac{\Delta \mathrm{V}_{\text {out }}}{\Omega}=\frac{\Delta \mathrm{C}_{\text {diff }}}{\Omega} \frac{V_{D C}}{C_{f}} G_{I N A} T_{d e m} T_{L P F}
$$

The output signal is modulated at f_{d}. The transfer function of an ideal demodulation, based on the multiplication by a harmonic sinewave at f_{d} (obtained from the drive loop) gives a factor $1 / 2$ for the baseband signal. The signal component at twice f_{d} is filtered out, so:

$$
T_{d e m}=\frac{1}{2}
$$

We further assume that the transfer function of the LPF is unitary for signals within the gyroscope bandwidth. Thus

$$
\frac{\Delta \mathrm{V}_{\text {out }}}{\Omega}=\frac{\Delta \mathrm{C}_{\text {diff }}}{\Omega} \frac{V_{D C}}{C_{f}} G_{I N A} \frac{1}{2} 1=56 \frac{\mathrm{mV}}{\mathrm{rad} / \mathrm{s}}=1 \frac{\mathrm{mV}}{\circ / \mathrm{s}}
$$

3) The linearity error is defined as

$$
\epsilon_{\text {lin }}=\frac{\left(\Delta C_{\text {real }, \text { FSR }}-\Delta C_{\text {lin,FSR }}\right)}{\Delta C_{\text {real,FSR }}} \cdot 100
$$

Where

$$
\Delta C_{r e a l, F S R}=C_{0}\left(\frac{2 \frac{y_{F S R}}{g}}{1-\left(\frac{y_{F S R}}{g}\right)^{2}}\right), \quad \Delta C_{l i n, F S R}=2 C_{0} \frac{y_{F S R}}{g}
$$

Thus

$$
y_{F S R}=g \sqrt{\frac{\epsilon_{\text {lin }}}{100}}=90 \mathrm{~nm}
$$

And then, using the expression of mechanical sensitivity, find the maximum measurable angular rate that guarantees a linearity error $<0.2 \%$

$$
\Omega_{F S R}=\frac{y_{F S R}}{\frac{\Delta y}{\Delta \Omega}}=62 \frac{\mathrm{rad}}{\mathrm{~s}}=3210^{\circ} / \mathrm{s}
$$

The supply voltage $\pm V_{D D}$ required by the amplifiers of the sense chain to match the maximum rate is given by

$$
\pm V_{D D}= \pm \frac{\Delta \mathrm{V}_{\text {out }}}{\Omega} \Omega_{F S R}=3.21 \mathrm{~V}
$$

4) In the figure below it is reported a sample graph of the sensitivity as a function of the angular rate frequency (note that the graph shows the case of a mode-split value of 1 kHz , while here
we have 500 Hz). The frequency of the $2^{\text {nd }}$ order low-pass filter is selected in order to filter out the undesired peak corresponding to the angular rates occurring close to the mode-split value.

The peak of the considered curve is $\mathrm{Q}_{s} / 2 / \mathrm{Q}_{\text {eff }}$ times larger than its DC response.

$$
\frac{\text { Peak Value }}{\text { DC Value }}=\frac{\frac{Q_{s}}{2}}{\frac{f_{s}}{2 \Delta f}}=\frac{100}{15.6}=6.4
$$

As a first approximation, we may force that this amplification is cancelled by the LPF in such a way that the gain at the mode-split value is brought back to the DC value. We thus have to reduce the gain by a factor 6.4 with a two-pole system ($-40 \mathrm{~dB} / \mathrm{dec}$). The equation to find the cut-off value for the LPF can be thus written as:

$$
\left|\left(\frac{1}{1+j \Delta \omega \tau_{L P F}}\right)^{2}\right|=\frac{1}{6.4} \rightarrow\left|\left(\frac{1}{j \Delta \omega \tau_{L P F}}\right)^{2}\right|=\frac{1}{6.4} \rightarrow\left(\frac{f_{L P F}}{\Delta f}\right)^{2}=\frac{1}{6.4} \rightarrow f_{L P F}=\frac{\Delta \mathrm{f}}{\sqrt{6.4}}=197 \mathrm{~Hz}
$$

A good approximation is to say - without taking the calculations above, that the filter should be typically placed between $\Delta f / 2(250 \mathrm{~Hz})$ and $\Delta f / 3(166 \mathrm{~Hz})$.
5) In a first approximation, one can consider only the frequency variation of the resonance frequencies.

$$
\begin{gathered}
\partial f_{d}=T C_{F} \cdot \pm d T \cdot f_{d}= \pm 27.21 \mathrm{~Hz} \\
\partial f_{s}=T C_{F} \cdot \pm d T \cdot f_{s}= \pm 28.11 \mathrm{~Hz} \\
\partial \Delta f=\partial f_{s}-\partial f_{d}= \pm 0.9 \mathrm{~Hz} \\
\partial \text { Sens }=\frac{\partial \Delta f}{\Delta f}= \pm 0.18 \%
\end{gathered}
$$

Indeed, in presence of an AGC, the temperature effects on the quality factor will be controlled. However, as the text says nothing about the presence of the AGC, we also check the effects caused by changes in the drive mode quality factor:

$$
\partial \text { Sens }=\frac{d Q_{D}}{Q_{D}}=-\frac{1}{2} \frac{d T}{T}= \pm 10 \%
$$

AS the sensitivity is linear with the displacement, which is in turn linear with Q_{D}, this is the variability that would affect the sensitivity in absence of an AGC.

