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Transfer function 2

T(s)
X(s) Y(s)

• The transfer function of a linear time-invariant (LTI)
system is the function of complex variable H(s) that
describes, in the frequency domain, the relationship
between the input X and the output Y of the system.

𝑇 𝑆 =
𝑌 𝑠

𝑋(𝑠)

• Typical representation: Bode plots of modulus (or
magnitude) in dB units 𝑇 𝑗𝜔 𝑑𝐵 = 20 log10 |𝑇 𝑗𝜔 |

and phase ∠𝑇 𝑗𝜔 = 𝑎𝑡𝑎𝑛
𝐼𝑚 𝑇 𝑗𝜔

𝑅𝑒 𝑇 𝑗𝜔
, obtained

through a domain restriction of the complex function
𝑇 𝑠 (i.e. imposing 𝑠 = 𝑗𝜔).

• A certain sinusoidal input at a generic frequency will 
by amplified/attenuated at the output (described by 
the modulus diagram), and will have a certain phase 
shift (described by the phase diagram). 
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Poles/zeroes and Bode plot rules 3

• 𝑧𝑛 elements are named zeroes and 𝑝𝑛 elements are named poles;

• Some basic rules to plot a Bode graph:
• Zeroes give +20dB/decade slope in the modulus plot;
• Zeroes give a +90° shift in the phase diagram;
• Poles give -20dB/decade slope in the modulus plot;
• Poles give a -90° shift in the phase diagram;

• Given the expression of a generic transfer function, one can find the solutions 𝑧𝑛 and
𝑝𝑛 that null the numerator and the denominator, respectively.

𝑂𝑈𝑇

𝐼𝑁
=

1
𝑗𝜔𝐶
1
𝑗𝜔𝐶

+ 𝑅
=

1

1 + 𝑗𝜔𝑅𝐶

OUT

𝑓𝑝𝑜𝑙𝑒 =
1

2𝜋𝑅𝐶

• Basic example: a simple RC.

IN

∠
𝑂𝑈𝑇
𝐼𝑁

𝑗𝜔

𝜔

𝑓𝑝𝑜𝑙𝑒
𝐶

𝑅

0°

−90°

𝑂𝑈𝑇

𝐼𝑁
(𝑗𝜔)

𝜔𝑓𝑝𝑜𝑙𝑒

−20𝑑𝐵/𝑑𝑒𝑐

𝜏 = 𝑅𝐶,



MEMS and Microsensors

Operational amplifier 4

−

+

𝑉𝑜𝑢𝑡

𝑽𝒐𝒖𝒕 = 𝑨𝟎 ⋅ 𝑽𝑫𝑰𝑭𝑭 + 𝑨𝑪𝑴 ⋅ 𝑽𝑪𝑴𝑉𝐶𝑀

• The input impedance of an ideal amplifier is, by definition, infinite. The ideal op-amp does not 
absorb any input current: signal currents of inverting and non-inverting terminals are null.   

• The output impedance of an ideal amplifier is, by definition, null. So, the output terminal acts as 
an ideal voltage generator:  𝑽𝒐𝒖𝒕 will be always equal to 𝑨𝟎 ⋅ 𝑽𝑫𝑰𝑭𝑭, regardless of the amount of 
current that has to flow towards the output load.

• Typically, an op-amp has 3 signal-related 
pins: the non inverting (+) and the 
inverting (-) input pins and the output.

• An ideal operational amplifier responds  
only to differential signals 𝑉𝐷𝐼𝐹𝐹, and 
rejects common-mode signals 𝑉𝐶𝑀. 
Thus, writing the output voltage 
expression:

it can be said that 𝑨𝟎, the differential 
open-loop gain, should be very high, 
ideally infinite, and the common-mode 
gain 𝑨𝑪𝑴 should be ideally null.

𝑉𝐷𝐼𝐹𝐹
2

𝑉𝐷𝐼𝐹𝐹
2
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Negative feedback 5

𝜖 = 𝑠𝑖𝑛 + 𝑠𝑜𝑢𝑡 ⋅ 𝐹(𝑠)

𝑠𝑜𝑢𝑡 = 𝜖 ⋅ 𝐴 𝑠 = 𝑠𝑖𝑛 + 𝑠𝑜𝑢𝑡 ⋅ 𝐹 𝑠 ⋅ 𝐴(𝑠)

𝐺 𝑠 =
𝑠𝑜𝑢𝑡
𝑠𝑖𝑛

=
𝐴 𝑠

1 − 𝐴 𝑠 𝐹(𝑠)
=

𝐴 𝑠

1 − 𝐺𝑙𝑜𝑜𝑝(𝑠)
, 𝑖𝑓 |𝐺𝑙𝑜𝑜𝑝| ≫ 1 → 𝐺 𝑠 =

1

𝐹(𝑠)

𝜖 =
𝑠𝑖𝑛

1 − 𝐴 𝑠 𝐹(𝑠)
=

𝑠𝑖𝑛
1 − 𝐺𝑙𝑜𝑜𝑝(𝑠)

A(s)
𝑆𝑖𝑛

F(s)

𝑆𝑜𝑢𝑡+

−

𝜖

• The negative feedback concept relies on the scheme 
shown in the figure, where A(s) is typically a very high 
gain block (e.g. an operational amplifier!) and F(s) can 
be a passive component (e.g. a resistor or a capacitor). 

• The 𝝐 signal driving the high-gain amplifier is 
reduced by the effect of the feedback.  
A(s)F(s) is called the loop gain, and 
determines the ‘’strength’’ of the feedback. 

• For a high loop gain, the 
transfer function of the 
entire block is only 
determined by the feedback 
components.

• Elaborating signal expressions in the represented loop:

• But…why do we use negative feedback?
• High differential gains of operational amplifier are inaccurate, they can’t be used as standalone reliable 

differential gain blocks. But they represent the main building block of a robust negative feedback loop, in 
which the signal gain is only determined by feedback passive components, usually more precise and 
reliable.
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Basic configurations: voltage buffer 6

𝑉𝑖𝑛

• You can easily recognize the scheme of the negative 
feedback in the schematic in figure. The A(s) block is 
represented by the operational amplifier, and the F(s) is 
simply equal to 1 (as the output is simply shorted to the 
negative pin).

𝑉𝑜𝑢𝑡
• You can study negative feedback remembering that 𝝐, 

i.e. the signal driving the amplifier, is lowered by the 
effect of the loop, and it’s ideally zero. Consequently, the 
voltage at the inverting pin is equal to Vin, order to keep 
𝝐 = 𝟎. This node is shorted to the output, so:

𝜖

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛

• But…why do we need a unitary gain? To decouple analog stages avoiding load effects. Try to compute the transfer 
functions of the two represented schematics…In the second case the load resistor is not influencing the RC stage.

𝑅1
𝐶1 𝑅𝑙𝑜𝑎𝑑

𝑅1 𝐶1

𝑅𝑙𝑜𝑎𝑑

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡
𝑉𝑖𝑛 𝑉𝑜𝑢𝑡
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Basic configurations: inverting and non-inverting stages 7

• Again, simply remembering to null the 𝝐 signal and 
knowing that no current flows into the opamp input pins 
(high impedance input), you can evaluate the transfer 
function of the inverting configuration:

• And you can follow the same steps to evaluate the 
gain of the non-inverting configuration:

𝑉𝑖𝑛
𝑅1

𝑅2

𝑉𝑜𝑢𝑡 = − 𝑉𝑖𝑛 ⋅
R2

𝑅1

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ⋅ 1 +
R2

𝑅1

• You can use this configuration to obtain an 
amplification of your input signal. The amount of the 
amplification can be fixed selecting the resistance 
ratio.

𝑉𝑖𝑛

𝑉𝑖𝑛

𝑉𝑖𝑛
𝑅1

𝑅1

𝑅2

𝑉𝑖𝑛
𝑅1 𝑉𝑖𝑛

𝑅1
𝑅2

0 𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

𝑉𝑖𝑛

𝑉𝑖𝑛
𝑅1

𝑉𝑖𝑛
𝑅1

𝑅2

𝑅1 𝑉𝑜𝑢𝑡

Ohm’s law: V =I/R
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TCA and TRA amplifiers 8

• Essentially, this stage is an inverting amplifier, with a capacitor in 
parallel to the feedback resistor. Differently from the situation  of 
the previous slide, we are now considering a current as an input
(given e.g. by the MEMS capacitance variation in time).

• 𝐶𝑝 doesn’t take part in the signal transfer function. Indeed, if 𝜖 is 

null, the voltage difference between the two terminals of this 
capacitor is null, and then no signal will flow into it.

• We can calculate the gain in a similar way with respect to the 
inverting amplifier, this time multiplying the current by the 

feedback impedance given by: 
1

𝑠𝐶𝑓
∥ 𝑅𝑓 =

𝑅𝑓

1+𝑠𝑅𝑓𝐶𝑓
.

𝑉𝑜𝑢𝑡 = 𝑖𝑖𝑛 ⋅
𝑅𝑓

1 + 𝑠𝑅𝑓𝐶𝑓
• So, the behavior of this stage is frequency-dependent.

𝑇 ∼ 𝑅𝑓 𝑇 ∼
1

𝑠𝐶𝑓

𝑅𝑓

𝐶𝑓

𝐶𝑃𝑖𝑖𝑛

𝑇 𝑠 =
𝑉𝑜𝑢𝑡 𝑠

𝐼𝑖𝑛 𝑠
=

𝑅𝑓
1 + 𝑠𝑅𝑓𝐶𝑓

𝑓𝑝 𝑓𝑝
𝑓𝑠𝑖𝑔

𝑓𝑠𝑖𝑔

TRANS-RESISTANCE AMPLIFIER (TRA) TRANS-CAPACITANCE AMPLIFIER (TCA)

• The signal frequency is lower 

than the pole 𝑓𝑝 =
1

2𝜋𝑅𝑓𝐶𝑓
. So we 

can neglect the capacitor and my 
output will be simply the input 

current multiplied by the 𝑅𝑓.

• This solution is rarely adopted 
in our cases of interest. 
Typically, the resistor thermal 
noise dominates… (see  the 
slides of the course)

• The signal frequency is higher 

than the pole 𝑓𝑝 =
1

2𝜋𝑅𝑓𝐶𝑓
.  So I 

can neglect the resistance and my 
output will be given by the input 

current integrated on the 𝐶𝑓.

• This is the typical solution used 
in most of the case studies 
during the course…

𝑖𝑖𝑛

|𝑇 𝑠 |

𝑓

|𝑇 𝑠 |

𝑓
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Some op-amps non-idealities -1 9

-

+

• When the pins of an opamp are at the same voltage, the 
output should be null. This is not true in a real opamp: a 
differential voltage 𝑉𝑜𝑠 should be applied to the pins in order to 
keep the output at ground.  

• Message to take home: when you design a opamp stage, keep 
in mind that even without input signal, you will have a non-
null DC output.  

• Typically, if your signal is  at a frequency higher than DC, you can 
operate a frequency selection using an high-pass filter (see next 
slides), cutting out offset and keeping the useful signal. 

𝑉𝑜𝑢𝑡

𝑉𝑜𝑠

-

+

𝑉𝑜𝑢𝑡

• We said that no current flows into either input terminal. This is a 
key concept for analyzing an opamp stage signal gain. However, in 
reality, a small current flows into both inputs pins. You can model 
this effect with DC  current generators and find the contribution of 
this currents in terms of output voltage.

• Check exercise 2 about accelerometers in order to understand 
issues given by bias currents and common solutions 

𝑖𝑏𝑖𝑎𝑠

𝑖𝑏𝑖𝑎𝑠
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Some op-amps non-idealities -2 10

𝑅2 = 990kΩ

• The opamp is supplied through  DC suitable voltage 
sources, called 𝑉𝑠𝑢𝑝𝑝𝑙𝑦. The output of an opamp

cannot be higher than this voltages. An opamp stage 
with a ±3𝑉 supply, a 100 gain and a too high input 
signal will clamp at the supply voltage! 

𝑽𝒔𝒖𝒑𝒑𝒍𝒚

−𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝑅1 = 10kΩ

𝑅1 = 10kΩ

𝑅2 = 990kΩ

𝑽𝒔𝒖𝒑𝒑𝒍𝒚

−𝑽𝒔𝒖𝒑𝒑𝒍𝒚

𝑽𝒔𝒖𝒑𝒑𝒍𝒚

−𝑽𝒔𝒖𝒑𝒑𝒍𝒚

10𝑚𝑉
1𝑉

500𝑚𝑉

-

+

𝑆𝑉

𝑆𝐼

• The noise of an opamp can be modeled through 
equivalent input-referred voltage and current noise 
generators.

• To calculate the contribution given by this noise 
sources to the stage output, you can consider this 
sources as signal sources and calculate their transfer 
function to the output squared (because we are 
dealing with noise power, not amplitude). 

• Check the exercise classes for noise transfer functions 
in typical MEMS readout circuital schemes.

• For a typical MOS differential-pair-input opamp, the 
dominant contribution is the voltage noise given by 
the MOS couple:  

𝑆𝑉 = 2 ⋅
4𝐾𝐵𝑇𝛾

𝑔𝑚

𝑉2

𝐻𝑧
, 𝛾 =

2

3
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Advanced configurations: INA 11

𝐺𝐼𝑁𝐴 = 1 +
49,5𝑘Ω

𝑅𝑔

• The shown schematic represents an Instrumentation amplifier (INA).

• Regardless of the circuital complexity, what you need to know is that this block implements an high-precision
differential amplifier. Thus, the output of this stage can be written as:

𝑅𝑔 INA

𝑉𝑜𝑢𝑡,𝐼𝑁𝐴 = 𝐺𝐼𝑁𝐴(𝑉2 − 𝑉1)

• The INA gain 𝐺𝐼𝑁𝐴 is fixed by internal parameters of the component and by a user-selectable external 
resistance:

user-selectable

Provided by the manufacturer
𝑉1

𝑉2

𝑉𝑜𝑢𝑡
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• In order to rectify a sinusoidal wave, the circuit behavior 
should be non-linear: it should have a positive gain for 
the positive semi-period of the sine wave, and an 
inverting gain for the rest of the period. This is possible 
using non-linear components as diodes.

𝑡

𝑉𝑉

𝑡

𝐺 > 0

𝐺 < 0

rect

Positive semi period

Negative semi period
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Filters 13

LOW-PASS-FILTERS HIGH-PASS-FILTERS BAND-PASS-FILTERS

• A simple RC is a low pass filter, as 
seen in slide 2 

• An example of an application is 
the mean value extraction from a 
rectified sinusoidal wave. This 
signal is composed by a sinusoidal 
component and a DC value: the 
LPF filter attenuates the AC 
component and let pass the DC 
one:

• This CR implements an high 
pass filter:

• This kind of filter can be used to 
cancel unwanted low-frequency 
contributions keeping the AC 
signal untouched. (e.g. I can 
erase the DC offset at the 
opamp output…)

• A band pass can be realized 
thorugh passive and active 
networks, as the other kind of 
filters.

• Also the MEMS resonant peak is a 
band-pass filter! It selectively 
amplifies only a range of 
frequencies near the peak! This is 
why, if we drive the MEMS with a 
square-wave, we obtain a 
sinusoidal current as an output…

POLE

ZERO

𝑅𝐶

𝑉𝑖𝑛 𝑉𝑜𝑢𝑡

𝑇 𝑠 =
𝑠𝐶𝑅

1 + 𝑠𝑅𝐶

• Filters are frequency-selective elements: they amplify with a gain 𝐺 ≥ 1 frequency components in a 
specific range, attenuating components outside this range. 

• Filters are typically used to isolate the signal bandwidth, cutting off noise at higher (or lower) 
frequencies. More in general, filters are used when a frequency-selective operation is needed.

|𝑇 𝑠 | |𝑇 𝑠 | |𝑇 𝑠 |

𝑓 𝑓 𝑓

LPF
𝑡

𝑉


